数据科学家的人才短缺和薪水高涨已经达到了顶板,未来还会持续下去吗?
在过去几年中,高级分析(#大数据#分析)空间一直经历着严重的FOMO(害怕错过)。(译者住:FOMO(Fear of Missing Out)出自《人类行为计算》,意思为害怕错过朋友圈里发生的事情,在这里可以理解为,企业害怕错过大数据分析的浪潮。)
自从2012年《哈佛商业评论》发表了一篇声明数据科学家是本世纪最性感的工作,在2013年,麦肯锡全球研究院(MGI)发表了一份报告,到2018年美国的经验熟练数据科学家短缺190000,每个人都冲在前面去收集和储存数据科学家的信息。聪明的求职者开始用“数据科学家”作为自己的简历的技巧(并获得激动人心的工作提供),不管他们的实际的资格或者经验如何。
但是对于所有这一切,组织还没有找出什么方法来解决这些拥有高素质的个人,而且还不知道在他们上面的投资如何才能使他们富有成效的和有效益的工作,从而取得更高的效益。
对人才的竞争可能是医疗数据和分析的经验。最近的一项研究提到,
37%的受访者表示缺乏合格的员工是作为分析的采用率的一个因素。另一项研究出了这人才市场的一些细微差别,如下:
数据科学家们中间只有6年的经验,但受过高等教育(92%至少有硕士学位,48%有一个博士学位),绝大多数是男性(89%),和一个不成比例的大量是在国外出生的(36%)。
西海岸上雇佣了超过三分之一(36%)和近一半为企业在技术和游戏行业工作(43%)。
数据科学家的研究表明中值补偿的范围可以从91000美元但拥有一至三年的经验,而薪水是250000美元需要领导10个或更多的经理领导团队。
这些数据有什么问题?
首先考虑这个:
有几个关键因素影响分析从而努力提高使用率,其中之一就是人才短缺。
数据科学家的人才并不很好找,至少在美国。
此外,看来年轻工人和应届大学毕业生宁愿在小型组织,提供更具挑战性的数据分析工作来解决问题.
这是我的评价:
1:很可能,才华横溢的稀缺的数据科学家正在被由财大气粗的风投投资的硅谷初创企业吸收。由于数据科学家的规模池不能迅速或者充分满足需求,我们可以假设这些数据科学家贡献分析平台的发展,将为企业提供可伸缩的选项和减少对大型团队的需要非常昂贵的数据的科学家。事实上,Facebook和LinkedIn的最高支付工作列表是数据科学家的软件工程师。
2:许多大型企业发展创造性的解决方案,例如“团队合作”,试图满足数据科学家的工作要求与两个或三个80000美元的个人,而不是一个250000美元的摇滚明星。
在我看来,一些新兴的趋势可能会解决这个问题在短期内人才短缺:
1、外包:越来越多的分析服务外包给印度公司,而这些公司主要通过大学毕业生成为数据科学家的机会来建立内部学院,教他们基本的统计数据,数据分析和技术。我们有大批的印度程序员介入来填补一个巨大的人才短缺,从而印度的科技行业也加强了。分析师和数据科学家有什么不同吗?
2、自动化:我们正在见证未来极端自动化和简化的时代,和永不停歇的摩尔定律(即大致的计算能力每18个月增加一倍,相应的价格下跌)。我们已经在这一转变在劳动密集型功能,如数据中心管理流程自动化机器人列为遣返对象工具正在迅速取代人类劳动。
3 、教育替代:对于任何稀缺商品,市场总是在寻找替代品的步骤。在这种情况下,统计学和应用数学博士学位在很快就会补充由非技术(如果不是取代),市场将提供给自学和受教育的个体用劳动力低价的选择。我们看到这一次又一次地发生在软件编程世界里,所以这次将是不同的。
这些力量的影响将导致不可避免的回归,意味着过高的薪水将降至平均水平。
在我写这篇文章时,有许多在硅谷创业公司和在世界其他地方,试图简化整个分析过程提供了一个完整的解决方案,包括预先构建的机器学习算法,在端到端技术堆栈放在一个安全的和可伸缩的云环境。
大公司依靠这个。
微软和亚马逊的机器学习平台是一个基于云计算的预测分析引擎,如何选择和部署模型的详细教程。亚马逊的机器学习作为服务提供的可视化工具和向导指导您完成创建机器学习的过程模型,无需学习复杂的算法和技术。
棺材最后一击将是企业和商界领袖所锤成的,他们正在回心转意,停止疯狂招聘那些投资而没有回报率的人才。
历史告诉我们足够的教训。西班牙征服美洲及其后续占领南美从15到19世纪主要是Silver,。崩溃的Silver的价值在很大程度上导致了帝国的衰落。
(译者注1:Silver,释义为银,银币。在西方,15世纪到19世纪中,Silver都是主要的货币,包括那时候的中国,银都是主要流通的货币。有兴趣的朋友可以看一下《银线:19世纪的世界与中国》这本书。
在19世纪后期,由于银价不断下跌,从而导致复本位制崩溃,形成跛行本位制。当时是金银双本位制,国家规定了一个金银互换的比例,而民间市场显然也有这样一个比例,国家制定的比例明显缺乏弹性,也就是说不能快速按照金银间实际价值进行调整。
从而导致了大家都去抢金币,熔化后收藏,从而逐渐退出流通领域。而银币则在市场上泛滥成灾,导致其价值不断贬值。从而有了格雷欣法则,即劣币驱逐良币。)
(译者注2:为什么把数据科学家比喻成19世纪的Silver,最大的问题还是在于,数据科学家薪水过高,而其能产生的价值和薪水目前还不成正比,且冠名自己为数据科学家的人参差不齐,没有一个统一标准衡量他们的能力。在中国大数据市场也一样,很多做数据分析的,简历上自称为“数据科学家”,或者大数据人才,诸如此类,薪水立刻水涨船高,这已经成为大数据圈子的一个梗。)
数据科学家们今天的Silver,高级分析项目,预计将产生竞争优势的企业。问题是:它维持其价值多长时间?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30