t检验中的t值和p值是什么关系_t检验和p值的关系
t检验中通过样本均值 总体均值 样本标准差 样本量 可以计算出一个t值,这个t值和p值有什么关系?
根据界值表又会查出一个数,这个数和t值比较,得出大小,判断是否接受原假设。感觉p值一直都没有什么作用?
解答:在进行t检验时,会计算出一个t值,而在选定显著性水平后,可以找到相比较的t值,两者可以比较,判断显著性。p值代表的是不接受原假设的最小的显著性水平,可以与选定的显著性水平直接比较。例如取5%的显著性水平,如果p值大于5%,就接受原假设,否则不接受原假设。这样不用计算t值,不用查表了。
准问:其实是不是可以理解成 就是按照自由度和0.05来查表看p值的范围。例如 自由度是34的话,t〈t 0.05,34,则表示P >0.05,按α=0.05水准,接受原假设H0。
可以这么理解么?
回答:可以这么理解,t值其实就相当于确定的了一个置信区间,在这个区间内,接受原假设,而p表示的是置信区间之外的那部分;在确定t值时置信区间已经确定了,p值也就确定了,p值作为一个标准,你可以选的是显著性水平,只要比较一下就可以。两者在本质上时一样的。
其他解答:你这样理解是有偏误的。p值是根据统计量值计算出来的,跟显著性水平是没有关系。只能说根据计算出来的p值来和显著性水平比较,当p值小于显著性水平是拒绝原假设。而不能说根据显著性水平确定p值的范围。简言之,p值是根据样本计算出来的,而显著性水平则是认为规定的
解答:同意你的观点,p value is usually based on sample, and it is a calculated value, but significant level is usually set by statisticians subjectively…
其他疑问:这样啊~
基础知识不好 其实我应该是压根都不知道p值是怎么算出来的 例如 通过样本均值 总体均值 样本标准差 计算出了 t=1.77,自由度=34,查t界值表可以获得一个对应值 2.032,那p值是根据2.032计算出来的么?还是其他的方法?
多谢啦~
解答:不对。你这个2.032是根据给定的显著性水平计算出来的吧。p值不依赖于这个,p值就是在给定的自由度下(注意这里不要求显著性水平),通过计算出来的统计量值t=1.77,结合t分布求出当T>1.77是的概率 ,这个概率就是p值,如果是双侧检验的话还要乘以2
当显著性水平为0.05,自由度为34的时候,查t界值表得到一个对应数据2.032。这个值的意义主要是什么呢?数据分析培训
p值能直接跟显著性水平比较;而t值想要跟显著性水平比较,就得换算成p值,或者将显著性水平换算成t值。就是这么简单粗暴
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21