关于统计学spss中的p值的意义的问题解释
p值说的是你算出来的一个检验变量所对应的概率值,比如算出来p值是10%,说的就是,你如果以此为界拒绝原假设的话,那么有10%的可能性要犯错误,就是说本来原假设对,但是你却给拒绝了。所以说p值越大,拒绝原假设的理由越不充分,也就是这个因素对结果没有明显影响;有时候p值算出来接近0,就说明,你以这个数为界,如果拒绝原假设,那么你不可能犯错误,就说明你这个数字非常不符合原假设。
除在方差齐性检验和正态性检验中 P值>sig 表示证明没有差异,方差齐,为正态性,其他处均为 P值
P值是最常用的一个统计学指标,几乎统计软件输出结果都有P值。了解p值的由来、计算和意义很有必要。
. f
& 6 e) G0 _8 ^& l
一、P值的由来R·A·Fisher(1890-1962)作为一代假设检验理论的创立者,在假设检验中首先提出P值的概念。他认为假设检验是一种程序,研究人员依照这一程序可以对某一总体参数形成一种判断。也就是说,他认为假设检验是数据分析的一种形式,是人们在研究中加入的主观信息。(当时这一观点遭到了Neyman-Pearson的反对,他们认为假设检验是一种方法,决策者在不确定的条件下进行运作,利用这一方法可以在两种可能中作出明确的选择,而同时又要控制错误发生的概率。这两种方法进行长期且痛苦的论战。虽然Fisher的这一观点同样也遭到了现代统计学家的反对,但是他对现代假设检验的发展作出了巨大的贡献。)Fisher的具体做法是:) v# ?/ k8 k4 K7 P+ D! L3 G6 `
5 E. |) A o5 I6 l7 m
* 假定某一参数的取值。
选择一个检验统计量(例如z 统计量或Z 统计量) ,该统计量的分布在假定的参数取值为真时应该是完全已知的。6 |+ i; |. Y% }# n
* 从研究总体中抽取一个随机样本4计算检验统计量的值5计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。
* 如果P<0.01,说明是较强的判定结果,拒绝假定的参数取值。
* 如果0.01<P值<0.05,说明较弱的判定结果,拒接假定的参数取值。
* 如果P值>0.05,说明结果更倾向于接受假定的参数取值。+ f+ v$ L& |7 u) y/ g
) F2 R% q9 ?1 l1 k* s, M
可是,那个年代,由于硬件的问题,计算P值并非易事,人们就采用了统计量检验方法,也就是我们最初学的t值和t临界值比较的方法。统计检验法是在检验之前确定显著性水平,也就是说事先确定了拒绝域。但是,如果选中相同的,所有检验结论的可靠性都一样,无法给出观测数据与原假设之间之间不一致程度的精确度量。只要统计量落在拒绝域,假设的结果都是一样,即结果显著。但实际上,统计量落在拒绝域不同的地方,实际上的显著性有较大的差异。 E! R- B% H. R- v O
因此,随着计算机的发展,P值的计算不再是个难题,使得P值变成最常用的统计指标之一。
二、P值的计算为理解P值的计算过程,用表示检验的统计量,表示根据样本数据计算得到的检验统计量值。
左侧检验 vs6 K0 T* S5 ?% s. `4 D/ W2 C; |7 v
P值是当时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 =‘ r6 ?) C’ y2 a) w+ S1 r; f
右侧检验 vs& . j! m5 P M. T* K” S1 A7 h: U
P值是当时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 =
双侧检验 vs
P值是当时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 =# y* Z7 @2 c’ a6 n+ w: v; K) s
三、P值的意义P值就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明这种情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。/ G4 @7 s, h2 }’ ]) D( @1 N4 t
总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21