数据分析:常见的Excel函数全部涵盖在这里了
世界上的数据分析师分为两类,使用Excel的分析师,和其他分析师。
每一个数据新人的入门工具都离不开Excel。因为Excel涵盖的功能足够多。
很多传统行业的数据分析师只要求掌握Excel即可,会SPSS/SAS是加分项。即使在挖掘满街走,Python不如狗的互联网数据分析界,Excel也是不可替代的。
Excel有很多强大的函数,这篇文章主要介绍各种函数的用途。实战会后续文章讲解。
函数可以被我们想象成一个盒子,专门负责将输入转换成输出,不同的函数对应不同的输出。
=Vlookup( lookup_value ,table_array,col_index_num,[range_lookup] )
上文的Vlookup就是一个经典函数。函数中包含参数,括号里的部分都是参数。我们可以把参数想象成盒子上的开关。vlookup就有四个开关,不同开关组合决定了函数的输入和输出。
=Vlookup( 参数1,参数2,参数3,参数4)
复杂的原理不需要了解。这篇文章是常用函数汇总。甚至你不需要特别记忆怎么使用函数,应用Excel函数最重要的能力是学会搜索。因为绝大部分函数网上已经有相应的解释,图文结合,非常详尽。
学会将遇到的问题转换成搜索语句,在我还是新人时并不会vlookup,我遇到的第一个问题就是关联多张表的数据,我在网上搜索:excel怎么匹配多张表的数据。于是就学会了。这里推荐使用百度,因为前三行的结果基本是百度经验,对新人学习很友好。(后续图片均引用自百度经验)
在理解函数的基础上,我会适当引入高层次的内容,SQL和Python(内建函数)。将其和Excel结合学习,如果大家吃透了Excel的函数,那么后续学习会轻松不少。
——————
清洗处理类
主要是文本、格式以及脏数据的清洗和转换。很多数据并不是直接拿来就能用的,需要经过数据分析人员的清理。数据越多,这个步骤花费的时间越长。
Trim
清除掉字符串两边的空格。
MySQL有同名函数,Python有近似函数strip。
Concatenate
=Concatenate(单元格1,单元格2……)
合并单元格中的内容,还有另一种合并方式是& 。”我”&”很”&”帅” = 我很帅。当需要合并的内容过多时,concatenate的效率快也优雅。
MySQL有近似函数concat。
Replace
=Replace(指定字符串,哪个位置开始替换,替换几个字符,替换成什么)
替换掉单元格的字符串,清洗使用较多。
MySQL中有同名函数,Python中有同名函数。
Substitute
和replace接近,区别是替换为全局替换,没有起始位置的概念
Left/Right/Mid
=Mid(指定字符串,开始位置,截取长度)
截取字符串中的字符。Left/Right(指定字符串,截取长度)。left为从左,right为从右,mid如上文示意。
MySQL中有同名函数。
Len/Lenb
返回字符串的长度,在len中,中文计算为一个,在lenb中,中文计算为两个。
MySQL中有同名函数,Python中有同名函数。
Find
=Find(要查找字符,指定字符串,第几个字符)
查找某字符串出现的位置,可以指定为第几次出现,与Left/Right/Mid结合能完成简单的文本提取
MySQL中有近似函数 find_in_set,Python中有同名函数。
Search
和Find类似,区别是Search大小写不敏感,但支持*通配符
Text
将数值转化为指定的文本格式,可以和时间序列函数一起看
关联匹配类
在进行多表关联或者行列比对时用到的函数,越复杂的表用得越多。多说一句,良好的表习惯可以减少这类函数的使用。
Lookup
=Lookup(查找的值,值所在的位置,返回相应位置的值)
最被忽略的函数,功能性和Vlookup一样,但是引申有数组匹配和二分法。
Vlookup
=Vlookup(查找的值,哪里找,找哪个位置的值,是否精准匹配)
Excel第一大难关,因为涉及的逻辑对新手较复杂,通俗的理解是查找到某个值然后黏贴过来。
Index
=Index(查找的区域,区域内第几行,区域内第几列)
和Match组合,媲美Vlookup,但是功能更强大。
Match
=Match(查找指定的值,查找所在区域,查找方式的参数)
和Lookup类似,但是可以按照指定方式查找,比如大于、小于或等于。返回值所在的位置。
Row
返回单元格所在的行
Column
返回单元格所在的列
Offset
=Offset(指定点,偏移多少行,偏移多少列,返回多少行,返回多少列)
建立坐标系,以坐标系为原点,返回距离原点的值或者区域。正数代表向下或向左,负数则相反。
逻辑运算类
数据分析中不得不用到逻辑运算,逻辑运算返回的均是布尔类型,True和False。很多复杂的数据分析会牵扯到较多的逻辑运算
IF
经典的如果但是,在后期的Python中,也会经常用到,当然会有许多更优雅的写法。也有ifs用法,取代if(and())的写法。
MySQL中有同名函数,Python中有同名函数。
And
全部参数为True,则返回True,经常用于多条件判断。
MySQL中有同名函数,Python中有同名函数。
Or
只要参数有一个True,则返回Ture,经常用于多条件判断。
MySQL中有同名函数,Python中有同名函数。
IS系列
常用判断检验,返回的都是布尔数值True和False。常用ISERR,ISERROR,ISNA,ISTEXT,可以和IF嵌套使用。
计算统计类
常用的基础计算、分析、统计函数,以描述性统计为准。具体含义在后续的统计章节再展开。
Sum/Sumif/Sumifs
统计满足条件的单元格总和,SQL有中同名函数。
MySQL中有同名函数,Python中有同名函数。
Sumproduct
统计总和相关,如果有两列数据销量和单价,现在要求卖出增加,用sumproduct是最方便的。
MySQL中有同名函数。
Count/Countif/Countifs
统计满足条件的字符串个数
MySQL中有同名函数,Python中有同名函数。
Max
返回数组或引用区域的最大值
MySQL中有同名函数,Python中有同名函数。
Min
返回数组或引用区域的最小值
MySQL中有同名函数,Python中有同名函数。
Rank
排序,返回指定值在引用区域的排名,重复值同一排名。
SQL中有近似函数row_number() 。
Rand/Randbetween
常用随机抽样,前者返回0~1之间的随机值,后者可以指定范围。
MySQL中有同名函数。
Averagea
求平均值,也有Averageaif,Averageaifs
Quartile
=Quartile(指定区域,分位参数)
计算四分位数,比如1~100的数字中,25分位就是按从小到大排列,在25%位置的数字,即25。参数0代表最小值,参数4代表最大值,1~3对应25、50(中位数)、75分位
Stdev
求标准差,统计型函数,后续数据分析再讲到
Substotal
=Substotal(引用区域,参数)
汇总型函数,将平均值、计数、最大最小、相乘、标准差、求和、方差等参数化,换言之,只要会了这个函数,上面的都可以抛弃掉了。
Int/Round
取整函数,int向下取整,round按小数位取数。
round(3.1415,2) =3.14 ;
round(3.1415,1)=3.1
时间序列类
专门用于处理时间格式以及转换,时间序列在金融、财务等数据分析中占有较大比重。时机序列的处理函数比我列举了还要复杂,比如时区、分片、复杂计算等。这里只做一个简单概述。
Year
返回日期中的年
MySQL中有同名函数。
Month
返回日期中的月
MySQL中有同名函数。
Weekday
=Weekday(指定时间,参数)
返回指定时间为一周中的第几天,参数为1代表从星期日开始算作第一天,参数为2代表从星期一开始算作第一天(中西方差异)。我们中国用2为参数即可。
MySQL中有同名函数。
Weeknum
=Weeknum(指定时间,参数)
返回一年中的第几个星期,后面的参数类同weekday,意思是从周日算还是周一。
MySQL中有近似函数 week。
Day
返回日期中的日(第几号)
MySQL中有同名函数。
Date
=Date(年,月,日)
时间转换函数,等于将year(),month(),day()合并
MySQL中有近似函数 date_format。
Now
返回当前时间戳,动态函数
MySQL中有同名函数。
Today
返回今天的日期,动态函数
MySQL中有同名函数。
Datedif
=Datedif(开始日期,结束日期,参数)
日期计算函数,计算两日期的差。参数决定返回的是年还是月等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12