数据分析实战:如果我为共享单车类产品做数据分析
很多人都在问:如何提高数据分析能力?笔者(申悦)认为一方面要掌握基本的分析框架和分析思路,另一方面就要不断实践。一种很好的实践方式就是:分析行业内典型产品的设计、运营思路,假设自己就是该公司的数据产品经理,你会如何对其进行分析。
前一阵在“在行”上就遇到一个案例,学员想了解共享单车类产品的数据分析思路,本文就针对这个案例整理一二,供读者参考。如果读者中有摩拜或ofo的同学,麻烦帮我参谋下思路是否靠谱哈^_^。
步骤一:明确用户是谁
以摩拜为例,其产品可能的目标用户有2类:用车方、维护方。用车方就是车辆使用者,维护方则是车辆提供者。用车方的诉求是随时随地有车骑,且付费后骑行体验要良好。维护方的诉求则是以最少的车辆服务最多的用车方,并从用车中得到收益。
步骤二:明确用户使用场景
从维护方角度看,其简单场景如下图:
从用车方角度看,其场景如下图:
明确使用场景、使用流程的原因在于:第一,我们的数据都来源于这些场景中;第二,我们需要通过分析这些数据,让用户每一步过程都顺利进行,避免流失;第三,还要让企业利益最大化,从而进一步让利用户。
步骤三:明确分析目标
经过人群定义和流程梳理,针对共享单车,我们可简单将分析目标定义为:
提高成功骑行次数——用户利益最大化
提高毛收入——企业利益最大化
步骤四:拆解目标
数据分析的思路就是将目标层层拆解,从每个子指标中发现问题。基于以上目标,可拆解为:
成功骑行次数 = app启动次数 x 每启动扫码开锁率 x 成功开锁率 x 成功结束率
成功骑行次数 = 每人每日行程次数 x 人数
毛收入 = 充值收入 – 投入成本 = ((每充值金额 – 欠费金额) x 充值次数) – ((每车成本 + 维护费用) x 车辆数量 )
注:以上拆解因人而异,因经验而异,从不同角度可得出不同公式,具体要根据实际运营目标进行调整。
步骤五:明确数据观察者角色
拆解出的子指标,需要呈献给不同角色的人群查看,以此来进行不同维度的分析,因此在分析前也要明确这些角色,例如:
决策层:关注核心指标、交易指标、时段趋势
维护组:关注车辆状态、位置、轨迹、故障率、用户反馈
运营组:关注骑行次数、充值情况、押金情况、欠费情况、信用积分
产品组:关注骑行流程、交互路径、用户反馈
开发组:关注请求失败率、App崩溃数
步骤六:明确数据度量
依据不同角色,可将拆解出的子指标进一步汇总整合,组成不同的统计度量值。这一过程中有一点要注意:每产出一份度量值,都要给出目的。也就是说看这个度量值能得出什么结论。没有结论的数值是没有意义的。如下所示:
核心数据
评估推广效果——注册用户数
评估活跃程度——启动次数、活跃用户数
评估业务健康程度——成功骑行次数、每启动骑行率(用车密度)
评估现金流健康程度——总入账、总出账、充值金额、欠费金额、车辆总成本
评估车辆健康程度——车辆总数量、故障车数量
运营数据
评估推广效果——注册用户数、下载点击数
评估活动运营效果——充值用户数、邀请注册用户数、成功骑行次数、积分增长/消耗量
评估用户质量——行程次数排行、骑行距离排行、信用积分排行、充值排行、欠费人数、认证人数
维护数据
车辆使用总览——车辆总数+车辆位置实时呈现——未使用/使用中/故障中/预约中
评估车辆使用率——使用车辆数/总车辆数
评估车辆故障率——故障车辆数/总车辆数
评估车辆闲置率——连续N日未使用车辆数/总车辆数,以及闲置车辆位置
产品数据
评估需求满足程度/车辆调度效果——每启动骑行率
评估产品使用情况——成功骑行次数、异常骑行次数、平均骑行里程、平均骑行时长、日骑行频率、启动次数、平均骑行天数、预约操作成功率
评估产品操作效果——充值路径、注册路径
评估产品使用异常情况——平均每次开锁成功率
评估用户骑行习惯——骑行轨迹聚合,为调度路线做参考
评估用户满意度——用户反馈好评数/用户反馈数
财务数据
用户金额:充值流水、充值次数、充值金额、充押金金额、余额不足金额、押金退款金额
维修金额:车辆生产成本、车辆维修成本
注:以上数据仅为举例,要根据实际需求调整。
步骤七:明确数据维度
有了度量值,就要思考可以通过哪些维度查看这些值,也就是要定义数据维度。常见的维度包括:
按时间:小时、日、周、月、季度、年度……
按地区:按省、按市、按区……
按渠道:邀请注册、扫码注册、广告点击注册……
按类型:已认证/未认证、已充值/未充值……
按位置:GPS地图定位
以上维度也要再根据需求不断调整、扩展、优化。
总结:
以上七步进行完毕,一个基本的共享单车数据分析框架就搭建完毕了。作为数据产品经理,一方面可基于此设计统计系统功能;另一方面可依此对不同人群定期产出数据分析报告了。但以上步骤只是完成了冰山一角,如何在观察数据后,对数据的变化合理归因,并对产品、运营策略的优化提出改进意见,才是真正需要深入研究的!
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10