你对大数据的认知,也许都是错的
自从美团王兴提出移动互联网下半场的概念后,大家在谈论每一个行业时,都要提到下半场,包括大数据行业。大数据的概念在这几年,火爆程度不亚于AI、VR等概念。
但是,作为一个大数据创业者,在谈大数据的下半场之前,现在互联网界对于大数据这个概念有太多误区。你所知道的大数据的概念,也许都是错误的。
大数据并不是在大,而是有用
首先,大数据并不在于其大,而在于质量,用通俗的话说就是有用。
大数据是一个比较泛的概念,大数据其实不是强调数据有多么大,而是有用。有用的数据才能称得上是大数据,有用就包括了规模、质量等各种综合性属性。
所有的数据都必须深度地与业务揉合。换句话说,创业者凭空想象的大数据模式一定都是虚假的。没有做过这个具体业务的人去谈合作,说如何帮到别人,这都是忽悠。
这个行业里有太多不可描述的事情,靠这个忽悠吃饭的人太多了。大数据领域,精准营销是一个被提及到最多的概念,没有之一,理论是大数据可以支持精准营销。大家都知道大数据需要规模,所有外行人看到的就是,你有这么多数据,所以你这个就是精准营销。但是忽视了一点就是,真正到精准营销前还有一个在中间隔着的,不是规模而是质量,而最终落地在效果。
这里面大家很容易忽视一点,就是大数据要做到支持精准营销,这里面对大数据是有约定的,数据的质量和规模同比都能达到的情况下,才可以实现。
规模在大数据这一行目前看做到不难,难在质量,而且质量是难以逾越的一道天堑。如果说DataEye从头再来,2年内只做到现如今的覆盖我觉的依旧没什么难度。但是,这种覆盖所获得的数据,能不能支撑所谓的大数据精准营销,这是关键。没有质量谈数据的商业化都是扯淡。
以游戏行业为例,在游戏里做大数据营销,或者放大一点在移动互联网做大数据的精准营销,其实收集的不外乎是人的一些行为数据。但真正能支撑你到后面变现的行为才是有效的,但这点并不是每个行为都能支持的。
所以在大数据行业里,无效数据和数据质量的监测是很重要的,这个我觉得是下半场的核心。它会影响每一家数据公司数据变现的效率,变现效率将会是下半场的赛点。
在接下来,如何高效地获得有效数据这对创业者的门槛将变得非常高。很多数据服务,比如说统计产品,不是拿到的数据都有效,我认为很多统计产品拿到的数据是无效的,甚至是没有任何商业化的价值。
创业者要关注自己最终数据商业化的落点在哪,如果是精准营销,什么样的数据是有效的呢?在这其中,高质量客户的行为数据对精准定位肯定是有效的。比如要推销一个潮品,你需要的用户不仅是个消费能力强的,而且是很潮的人,那么他就是一个高质量的数据。换句话说,如果产品都不能覆盖这些人(你商业落点的客户全体),覆盖的都是一些六七八九线城市的用户,这时候创业者跟投资者说看见没有,我有一两亿用户移动端行为数据,其实商业化根本无从谈起。所以我说的商业落点很重要,因为只有知道落点在哪你才知道你的数据质量该如何提升,究竟缺什么,该设计什么样的服务产品。
所以大数据的下半场,争夺的就是商业化效益,其中关键是数据质量的竞争。但想要高质量的数据或者高质量的客户,你就要提供高质量的服务产品,才能完成高效高质的数据积累。高质量的数据依赖高质量的业务,高质量的业务依赖于高质量的产品,三者相辅相成。
比如现在游戏行业买量、导量成本高了,于是需要更多的服务。开始创业的时候我们做了个产品叫广告监测,这个产品很简单,到16年之后就没怎么推了。因为我们觉得这个产品门槛很低,而且客户自己都能解决,很多客户已经自己解决了。有中小客户解决不了的,他可能用第三方。那在这一点上,我们必须提供高质量的业务或者产品。我们今年在产品布局就整个提升一个档次,提升整体数据质量,提升服务水平。
数据是客观的,也是最不客观的
在理论上来说,数据是最客观的,因为拿到的这些数据,都是通过设备等各种渠道采集的。但同时这也是最不客观的,因为人工可以干预并篡改。
在中国,纯粹的规模和量级很容易达到,有些人客观达不到,就通过主观的各种手段,哪怕是造假也很容易达到。所以说,数据规模这不是一个特别好衡量的东西,听上去太虚了。到现在为止,还会有些创业者喜欢说,他们覆盖的设备数量,然从十亿到几十亿台,甚至有的人说自己都快上百亿了,我在知乎里提过一个问题:请问中国的运营商一年入网多少台设备啊?大数据创业者太多,设备有些不够用了。
从腾讯离职,到现在我做大数据这么多年,随着项目的不断发展,对数据的感觉越来越深刻,数据这个东西真的很有意思,如果说它客观,它可能是这个世界上最客观的一个存在。但如果说它虚吧,它也最容易被修改。现在各行各业开口闭口都是数据,但是大家有没有想过,这个数据随时可以被修改。
这点不方便太展开说,具体原因你懂的。
这个阶段大数据核心不是技术,而是商业化
大数据创业到现在,决定最终发展的,其实不是大数据的技术,而是大数据的商业化。
上半场结束了,下半场竞争的是什么,我们确实一直在思考。想来想去恐怕就是商业化了。对数据源来说,不是比谁会忽悠,比的是谁更能赚钱,谁的变现效率更快。
不懂商业的创业者,一定是会垫底的,把大数据的坑填平的。中国不缺数据技术型人才,缺的是数据商业化人才。怎么样结合数据把它商业化,把这生意做好,这个是中国最缺的。
不仅是大数据,可能各个行业都是这样,现在缺乏真正的商业化。前面竞争已经基本结束,但真正走向商业是一道大坎。15年我在硅谷待了一段时间,见了很多以前在腾讯的兄弟,之前腾讯研究院的兄弟在google研究算法有不少,他研究的课题我看了,确实先进,但要说在技术上高多少也不见得,但是大家所展现的商业思维与探索,跟国内确实有比较大的差距。
现在在国外,有专门帮助客户做大数据商业化的公司。比如我了解的一个海外团队就是在帮全球各处运营商做数据商业化的。他们在海外做过的商业化的案子,包括门店、运营商、基站的选址,高速公路边上那种大的立柱广告的布设等等。
大数据的商业,最后一定是很简单直接的商业模式,越简单直接的商业模式越是一个好商业模式。纸面上的模式、数据等,那没任何意义。实践很重要,我看过太多大数据案例了甚至有些我可以告诉大家都是所谓的专家臆想出来的,相对于纸面上的案例我更喜欢踏实实践的失败例子。
整个大数据的上半场,大家拼概念、拿融资、收数据源,该拿的都拿了,数据源之争到16年基本上就收官了,格局已经形成。接下去的下半场就真的很残酷了,这拼的真的就是鱼死网破了。那下半场大家拼的是什么?拼的就是边际效应。既然圈了这么多人进来,那就得把这个闭环圆上,不然怎么收场?所以大数据下半场,就是拼变现和效率。创业者能等,投资人等不了。
大数据行业还有很长的路要走。现在很多时候都是看不清的,硅谷的《奇点来临》说,任何一个新兴行业最终都会有一个曲线。一个新兴的行业的发展一定都是波浪式发展的,一开始是高速发展,发展完之后进入调整期,然后再冲刺。大数据行业也是如此。当它经历低谷之后它会再次成长起来,那这整个行业可能就慢慢开始成熟了。而现在,我们处在离成熟阶段还有比较远的距离。
数据分析咨询请扫描二维码
在如今的数据驱动时代,掌握数据分析的工具和方法不仅是提高工作效率的关键,也是开拓职业机会的重要技能。数据分析涉及从数据的 ...
2024-11-08在现代商业环境中,企业正在逐步认识到数据挖掘技术在客户行为分析中的重要性。通过深度分析客户数据,这项技术不仅可以帮助企业 ...
2024-11-08数据挖掘分析是从大量数据中发现隐藏模式和有用信息的过程。尤其是在图数据挖掘中,提供了分析复杂关系和结构的独特视角。图数据 ...
2024-11-08在当今快速发展的商业环境中,提高运营效率已成为企业取得成功的关键因素。企业需要通过优化工作流程、利用技术创新和提升员工技 ...
2024-11-08Python 是一门非常适合初学者学习的编程语言。其简洁明了的语法、丰富的功能库,以及广泛的应用领域,使其成为学习编程的理想选 ...
2024-11-08在当今快速变化的商业环境中,金融数字化已经成为中小企业(SMEs)发展的关键驱动力。通过采用数字工具和技术,中小企业能够提高 ...
2024-11-08中小企业在全球经济中扮演着重要角色,然而,面对数字化浪潮,这些企业如何有效转型成为一大挑战。数字化转型不仅是技术的升级, ...
2024-11-08选择合适的数据分析方法是数据分析流程中的关键环节。它影响最终结论的准确性和可信度。在这个过程中,需要综合考虑数据的性质、 ...
2024-11-08在当今数据驱动的商业环境中,数据分析师扮演着至关重要的角色。他们帮助企业从大量数据中提取有用的洞察,从而推动决策制定和战 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,数据挖掘发挥着至关重要的作用。它不仅帮助企业从庞大的数据集中提取有价值的信息,还为企业的决策和业务运营 ...
2024-11-07数据分析可视化是一种通过图形化方式展现数据的技术,它使复杂的数据变得直观易懂,从而帮助我们更好地做出决策。在这个快速发展 ...
2024-11-07数据分析是一项至关重要的技能,尤其在当今数据驱动的世界中。Python以其强大的库和简单的语法成为了数据分析领域的佼佼者。本文 ...
2024-11-07在现代数据驱动的环境中,数据分析师扮演着至关重要的角色。他们需要掌握多种工具,以满足数据分析、处理和可视化的需求。无论是 ...
2024-11-07作为一名业务分析师,你将发现自己处于企业决策和数据驱动战略之间的桥梁位置。这个角色要求掌握一系列技能,以便有效地将数据转 ...
2024-11-07CDA中科院城市环境研究所(厦门)内训圆满成功 2017年9月12日-15日,CDA数据分析师在中科院城市环境研究所(厦门)进行了 ...
2024-11-07数据分析是现代商业和研究领域不可或缺的重要工具。无论是为了提高业务决策的准确性,还是为了发掘隐藏在数据中的潜在价值,了解 ...
2024-11-06数据分析是一个精细且有序的过程,旨在从海量数据中提取有用的信息,为决策提供有力支持。无论你是新手还是有经验的分析师,理解 ...
2024-11-06在当今竞争激烈的商业环境中,业务分析师(Business Analyst, BA)的角色变得愈加重要。随着企业对数据驱动决策的依赖加深,业务 ...
2024-11-06