智慧水务与大数据应用
智慧水务是通过数采仪、无线网络、水质水压表等在线监测设备实时感知城市供排水系统的运行状态,并采用可视化的方式有机整合水务管理部门与供排水设施,形成“城市水务物联网”,并可将海量水务信息进行及时分析与处理,并做出相应的处理结果辅助决策建议,以更加精细和动态的方式管理水务系统的整个生产、管理和服务流程,从而达到“智慧”的状态。在水资源短缺、水污染加剧的形势下,智慧水务正成为市场的热点。
根据预测,我国智慧水务市场规模超千亿。我国智慧水务的市场很大,但目前的市场也是无序的。归结起来,主要体现在三个方面:
目前对于智慧水务尚无一个行业通则的标准,有的中国水务企业对智慧水务的概念认识不清,以为“数字化改造”就是智慧水务;有的企业在投资智慧水务的过程中总想一蹴而就;
在一些项目的执行过程中,市政管网资料分散,很多数据或是丢失或是不连通,有非常多的数据孤岛需要去打通;
管网信息化、自动化、智能化欠缺等。目前,还有很多作业操作基本依赖人工,基本数据靠人工收集,出现的问题靠人工分析等。
大数据推进智慧水务建设
大数据指具有4V特性的数据:Volume海量、Velocity 增长快、Variety多样化、Value价值动态。为了分析处理大数据,相应产生的“块级虚拟化、挖掘建模、机器自学习......”等新技术,称为大数据技术。大数据技术大大解放了人们的分析能力。
可以分析更多的数据,甚至是相关的所有数据,而不再依赖于随机抽样;
研究数据如此之多,以至于不再热衷于追求精确度;
不必拘泥于对因果关系的探究,而可以在相关关系中发现大数据的潜在价值。
从智慧供电到智慧供水
法国电力集团EDF是全球领先的电力基础设施服务提供商。为推进智慧供电,公司在全法安装3500万智能电表,每10分钟抄表一次采集个体家庭的用电负荷数据,并对用户用电负荷曲线进行集中处理。公司专门成立企业数据分析中心,整合电表数据、气象数据、用电合同信息及电网数据等,来对销售管理提供运营分析支撑,例如:预测各类一级市场和大众市场内中小企业和家庭住户的电力消耗和需求趋势,营业收入,成本和利润率,从而帮助营销部门更为精确地找准目标客户,推出更具盈利性的新产品……总体上,EDF通过对数据资产分析利用,实现了精确定位目标客户、推出更具盈利性的新产品、扩大企业市场份额、提升客户服务响应速度、提升企业商业运作灵活度等一系列成效。
在法国电力集团的经验中,包括了诸如:引入并强化数据分析处理能力、由专业的大数据运营机构开展运营管理支撑等措施。而我们首先要注意到搜集数据、完善数据基础,积累数据资产的重要性。EDF通过智能表计的安装,实现精细化测量,在对消费者提供服务过程中,积累数据资源。通过将用电数据、合同数据、电网数据等各类数据融合,进行专业分析与管理,实现紊乱的数据资源向有效的数据资产的转化。同为能源企业,智慧水务的建设也可以从表计数据的规范处理和应用起步。美国加州智能精细化供水管理的开展过程中,供水公司就十分强调对智能水表数据的采集和应用。他们联合科技企业,加快普及智能水表,以“每小时收集近7亿个数据点”的规模收集海量的细粒度数据(ne-grained data);并把这些信息与数十个关于住房地点、房龄、气候和入住率的数据点整合到一起进行分析、预测,为用户提供水务互联网服务:给用户提供个性化用水报告、为节水行为打分、提示花园灌溉许可日期和许可量……在水资源极度紧张的状况下,加州智慧水务项目仍实现了平均5%的节水幅度。
大数据是推进智慧水务建设的核心问题。如果缺乏大数据分析处理,智慧水务的“大脑”就不够发达,“智商”就不够高,能力就不够强。大数据处理、挖掘模型等技术相对通用,但产生出融合智慧的基础数据,却需要一点一滴地积累。当前建设智慧水务,积累有效的“海量数据”已成为当务之急。
有效的数据采集是进行大数据分析的前提基础
为有效地采集数据、丰富信息流,必须不断地研发、改进技术以增强设备的采集能力,加大流量、水质、水压等方面各类新型传感设备的应用部署和普及。水表遍布千家万户,水表流量数据中蕴含着社会生产生活各方面的丰富信息,是行业天然的数据价值源泉。但我国目前的智能远传水表,不仅规模有限,并且在数据采集方面上仍只单纯要求“替代人工抄表,完成简单的水费收费”的功能,不仅未能体现投资价值,更难以满足未来的大数据需求,从而产生“未来重复投资、拖延水务企业智慧化进程”的风险。
智慧水务需要高密度、高精度、高价值的水务数据的大规模海量积累;在某些特定场景,比如特种工业企业水资源消耗监测时,对数据的采集和实时性的要求更为苛刻,要求“实时、完整、精确地采集到流量过程曲线数据”。为达到这些智慧应用场景的支撑要求,智能水表需要向1L级(0.001m3)、分钟级的流量数据采集精度和颗粒细度目标努力,这一要求对行业的技术、工艺都提出了较高的挑战。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21