【R语言】单一样本推断问题
非参数统计概念:
在实际问题中,对数据的分布形式和统计模型难以作出比较明确的假定,最多只能对总体的分布做出类似于连续性型分布或者对某点对称等一般性假定。这种不假设总体分布的具体形式,尽量从数据(样本)本身获得所需要的信息,通过估计而获得分布的结构,并逐步建立对事物的数学描述和统计建模的方法称为非参数方法。
单一样本的推断问题:
符号检验
符号检验所关心的就是通过符号“+”“-”的个数来进行统计推断
eg:假设某城市16座欲出售的楼盘均价(单位:百元 /平方米)
36 32 31 25 28 36 40 32 41 26 35 35 32 87 33 35
问:该地盘楼盘价格是否与媒体公布的3700元/平方米说法相符?
分析:
总体均值的点估计是样本均值,总体中位数的点估计是样本中位数,由于中位数的稳健性,将37理解为总体的中位数,则假设问题为:
H0:M=37 H1: M不等于37(待检验的中位数值)
假设:
S+:位于37右边的个数 S-: 位于37左边的个数
令K=min{S+,S-},且K服从p=0.5的二项分布
R代码:
##1.S-为检验统计量
sign1.test = function(x,pi,q0){
s1 = sum(x<q0) #S-的个数
s2 = sum(x>q0) #S+的个数
n = s1+s2
p1 = pbinom(s1,n,pi) ### 取检验统计量K=S-,计算 P(K<=s1)
p2 = 1-pbinom(s1-1,n,pi) ### 计算 P(K>=s1)
if(p1 < p2){ m1 = "one tail test:H1: Q > q0"
}else{
m1 = "one tail test:H1: Q < q0"
}
p.value = min(p1,p2)
m2 = "two tails test"
p.value2 = 2*p.value
list(sign.test.type = m1,p.values.of.one.test = p.value,p.value.of.two.tail.test = p.value2)
}
##以上便构建了符号检验的函数,接下来可以直接调用
data=c(36,31,25,28,36,40,32,41,26,35,35,32,87,33,35,32)##赋值
x=median(data)##获取样本中位数
sign1.test(data,0.5,37)
结果解读:
p=0.02127<0.05(显著性水平),拒绝H0,认为该地盘楼盘价格是否与媒体公布的3700元/平方米存在显著差异。
趋势检验
对于趋势分析,我们用一些数对来反映前后数据的变化。为保证数对同分布,前后两个数的间隔应该固定;为保证数对不受局部干扰,前后两个数的间隔应该较大。Cox-Staut趋势检验,是以数列中位于中间位置的数为拆分点,前后两两组成数对。
例:一个住宅小区的夜间噪音长期一直保持在30分贝。后来附近有建筑工地施工。数据是连续12天夜间在该小区所测得的噪声水平(分贝)。
30,31,33,35,31,30,68,60,65,67,66,64
请问:该建筑工地是否提高了小区的噪声水平?
建立假设:
Ho:该建筑工地没有提高小区的噪声水平
H1:该建筑工地提高了小区的噪声水平
检验统计量选取:
S=min{S+,S-}
S+:每一数对前后两值之差为正的个数
S-:每一数对前后两值之差为负的个数
R代码:
CS.test = function(x){
m = length(x)
c = if(m/2-round(m/2)==0){m/2}else{(m+1)/2} ### 此处亦可用floor(m/2)代替round(m/2)
d = if(m/2-round(m/2)==0){x[1:c]-x[(c+1):m]}else{x[1:(c-1)]-x[(c+1):m]}
n1 = length(d[which(d > 0)]) ### n1 = length(which(d > 0))
n2 = length(d[which(d < 0)])
n = n1+n2
s1 = sum(sign(d)== 1)
s2 = sum(sign(d)== -1)
if(n1 > n2){
m1 = "one tail test:H1: decreasing"
p.value = pbinom(n2,n,0.5)
}else{
m1 = "one tail test:H1: increasing"
p.value = pbinom(n1,n,0.5)
}
m2 = "two tails test"
s = min(s1,s2)
p.value2 = 2*pbinom(s,n,0.5)
if(n1==n2){p.value = 0.5;p.value2 = 1}
list(sign.test.type = m1,p.values.of.one.test = p.value,p.value.of.two.tail.test = p.value2)
}
上述就是Cox-Staut检验的算法代码
代入数据:
x=c(30,31,33,35,31,30,68,60,65,67,66,64)
结果分析:
单边检验P=0.015625<0.05(显著性水平)
故拒绝H0,认为该建筑工地提高了小区的噪声水平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26