京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		你真的会玩SQL吗?EXISTS和IN之间的区别
EXISTS和IN之间的区别
1.EXISTS只返回TRUE或FALSE,不会返回UNKNOWN。
2.IN当遇到包含NULL的情况,那么就会返回UNKNOWN。
	
当查询的列包含NULL时,NOT EXISTS正常返回TRUE或FALSE。
而NOT IN可能返回空集,如下
1:val IN(val1,val2,...,NULL),永远不会返回FALSE,而是返回TRUE或UNKNOWN。
2:val NOT IN(val1,val2,...,NULL),永远不会返回TRUE,而是返回NOT TRUE或NOT UNKNOWN。
	
看个示例:
Test1表
select t.[name] from Test as t
where exists (select t1.orderid from Test1 as t1 where t1.[name]=t.[name])
返回 aaa,ccc,ddd
	
select t.[name] from Test as t
where t.[name] in (select t1.[] from Test1 as t1)
返回 aaa,ccc,ddd
	
select t.[name] from Test as t
where not exists (select t1.orderid from Test1 as t1 where t1.[name]=t.[name])
返回 bbb
	
select t.[name] from Test as t
where t.[name] not in (select t1.[name] from Test1 as t1)
返回空集
练习
以下对就返回哪三值?
	
	答案
View Code
 用例数据库文件 你真的会玩SQL吗?之逻辑查询处理阶段 文末
/*写一条查询语句,返回在2007年下过订单,而在2008年没有下过订单的客户。
涉及的表:Sales.Customers表和Sales.Orders表。用exists
期望的输出:*/
custid      companyname
----------- ----------------------------------------
21          Customer KIDPX
23          Customer WVFAF
33          Customer FVXPQ
36          Customer LVJSO
43          Customer UISOJ
51          Customer PVDZC
85          Customer ENQZT
参考SQL:
--answer:
select custid, companyname
from Sales.Customers as C
where EXISTS
  (select *
   from Sales.Orders as O
   where O.custid = C.custid
     and O.orderdate >= '20070101'
     and O.orderdate < '20080101')
  and not EXISTS
  (select *
   from Sales.Orders as O
   where O.custid = C.custid
     and O.orderdate >= '20080101'
     and O.orderdate < '20090101');
/*
1.先处理外层查询,从Sales.Customers表别名C中取出一个元组,将元组相关列值custid传给内层查询
2.执行第一层内层查询,Sales.Orders表别名O,应用where子句返回满足条件O.custid = C.custid和orderdate在2007年至2008年
3.执行第二层内层查询,Sales.Orders表别名O应用where子句返回满足条件O.custid = C.custid和orderdate在2008年至2009年的值
4.执行not EXISTS,外查询根据子查询返回的结果集得到满足条件的行
*/
	
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28