
你真的会玩SQL吗?EXISTS和IN之间的区别
EXISTS和IN之间的区别
1.EXISTS只返回TRUE或FALSE,不会返回UNKNOWN。
2.IN当遇到包含NULL的情况,那么就会返回UNKNOWN。
当查询的列包含NULL时,NOT EXISTS正常返回TRUE或FALSE。
而NOT IN可能返回空集,如下
1:val IN(val1,val2,...,NULL),永远不会返回FALSE,而是返回TRUE或UNKNOWN。
2:val NOT IN(val1,val2,...,NULL),永远不会返回TRUE,而是返回NOT TRUE或NOT UNKNOWN。
看个示例:
Test1表
select t.[name] from Test as t
where exists (select t1.orderid from Test1 as t1 where t1.[name]=t.[name])
返回 aaa,ccc,ddd
select t.[name] from Test as t
where t.[name] in (select t1.[] from Test1 as t1)
返回 aaa,ccc,ddd
select t.[name] from Test as t
where not exists (select t1.orderid from Test1 as t1 where t1.[name]=t.[name])
返回 bbb
select t.[name] from Test as t
where t.[name] not in (select t1.[name] from Test1 as t1)
返回空集
练习
以下对就返回哪三值?
答案
View Code
用例数据库文件 你真的会玩SQL吗?之逻辑查询处理阶段 文末
/*写一条查询语句,返回在2007年下过订单,而在2008年没有下过订单的客户。
涉及的表:Sales.Customers表和Sales.Orders表。用exists
期望的输出:*/
custid companyname
----------- ----------------------------------------
21 Customer KIDPX
23 Customer WVFAF
33 Customer FVXPQ
36 Customer LVJSO
43 Customer UISOJ
51 Customer PVDZC
85 Customer ENQZT
参考SQL:
--answer:
select custid, companyname
from Sales.Customers as C
where EXISTS
(select *
from Sales.Orders as O
where O.custid = C.custid
and O.orderdate >= '20070101'
and O.orderdate < '20080101')
and not EXISTS
(select *
from Sales.Orders as O
where O.custid = C.custid
and O.orderdate >= '20080101'
and O.orderdate < '20090101');
/*
1.先处理外层查询,从Sales.Customers表别名C中取出一个元组,将元组相关列值custid传给内层查询
2.执行第一层内层查询,Sales.Orders表别名O,应用where子句返回满足条件O.custid = C.custid和orderdate在2007年至2008年
3.执行第二层内层查询,Sales.Orders表别名O应用where子句返回满足条件O.custid = C.custid和orderdate在2008年至2009年的值
4.执行not EXISTS,外查询根据子查询返回的结果集得到满足条件的行
*/
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11