大数据应用向前一步是什么
最初的数据应用是比较线性的,因为早期的数据运营流程和应用场景是已经被定死的,通常用作精准营销。渐渐的,我们发现,非线性数据应用对于企业的价值更大。
数据之于信息社会,就如燃料之于工业革命,是人们进行创新的力量源泉。大部分企业早已意识到数据的价值以及重要性,但真正享受到数据福利的公司却是少数。
先人一步掌握数据应用思维的企业,往往能够拥有更多的市场主动权。
最初,数据应用通常是线性的,但随着市场环境和技术成熟度的发展,数据应用正在走向非线性模式。
具体来说,企业可以通过使用技术工具,让企业能够将自己的多方来源数据进行 360°的自定义分析,通过一些统计和机器学习类的算法获得洞察,最终让企业自己去发挥怎样做数据应用以及灵活的做些测试。
对应的,实现非线性的数据解决方案,是目前全球范围 MarTech 和数据技术领域最新的热点 CDP (客户数据平台),也是数据云系统。
现实的尴尬
相比以前,如今企业拥有越来越多的渠道、设备、数据和消费者触点。因此,企业自身拥有的数据,以及市场上类似媒体、运营商等各种渠道的多方数据,其规模越来越大,类型越来越多,但却相当分散。
另外,早期数据市场上存在的问题,比如数据孤岛如今依旧存在。
市场中的大数据缺乏有效的、靠谱的交流方式,各个数据的拥有者如同一个个独立的水库。对数据的透明性、安全性,以及过程把控性的担心像一个个水闸,将本应流动的数据资源封锁在各自的数据孤岛上,活水变成了死水,使得大数据发展不那么顺畅。
对于企业,要去解决的问题有两个:分散的数据源和局部数据使用。
分散的数据源
“一个业务如果无法度量,则无法分析和增长”——美国管理学大师彼得德鲁克说。
如何度量,这里需要考虑一个统一视角的问题。数据统一视角的重要性在于它给使用者提供了一个量化的概念。它让使用者可以清晰的看到业务的运行情况,以便进行KPI考核和策略调整,促进业绩的增长。
从第一方数据来看,企业的自身数据包括:订单数据、CRM 数据、ERP 数据等,是企业通过各种不同渠道收集到的数据,比如 PC/移动站点、电商站点、移动app、互联网广告、实时互联网等数据源,以及企业持续积累的客户数据。这些数据对于企业决策及运营起着关键作用。
第三方数据则是企业可接入的外部供应商数据,比如媒体数据、外部系统/平台数据、第三方数据源数据。
企业拥有的数据规模很大,数据类型很丰富,但问题在于,这些数据,不进行统合,则很分散。
企业的真实需求
回归到商业本质,数据产品对于企业来讲,真正的价值是什么?效率和效果的提升。
效率和效果的提升,是从企业整体来讲的。因此,有行业人士提出一个新方向:“单独谈数据太片面了,应该是数据+用户体验,需针对消费者购买旅程设计个性化的服务”。
实现这个目标,企业需要从数据中获得洞察。而洞察的形成,则需要一个流程:“收集——统览——分析——梳理——提炼——获得结论,或者大数据洞察”。
那么获得洞察后,就能实际产生效应?当然不是。
企业接触消费者有 N 个触点,这里的触点,可以说是消费场景。真正把洞察和分析的数据结果,应用于各大消费场景中才能发挥实际价值。
另外,这不是一条线完成,导回数据、其他数据源的接入,以及应用于多场景的数据技术工具都是其中组件。
完成以上这些,需要“非线性”操作。
概括来讲,企业需要这样一个角色,负责对外和客户、合作伙伴、供应商的互动,以及对内收集和分析数据、通过使用数字化技术改善效率,实现组织和文化的转型。
从线性到非线性
对于大数据企业而言,随着数据不断的扩充和积累,需要对散落在各个渠道的数据进行良好的管理、控制和应用。我们将企业的数据化转型分为三个阶段。
1、过去:大部分企业没有发现数据的价值,没有分析能力,数据也无法应用;
2、现在:数据碎片化严重,缺乏统合及分析能力,无法统一应用;
3、未来:数据统一管理,打通数据孤岛,智能分析洞察,灵活智能运用。
从过去到未来,数据应用可以说正在从线性走向非线性的过程。
举一个例子,当一个尚未成为会员的用户来到品牌官网,他在浏览了感兴趣的商品、仔细比较了商品价格之后,最后却关闭了购买页面离开了网站。
没有人知道这个新用户究竟浏览了什么商品/在哪些商品页面停留了多久,也没有人能回答在订单转化的过程中,究竟是什么原因使他没有购买。因为在 CRM 中储存的大多是以销售为导向的数据,并不会涵盖像这样的实时行为数据。
结语
数据应用的非线性,属于正在探索未知水域,这是一个全新的蓝海市场。
目前,数据云处于早期阶段,可以看见其快速发展,但不会对市场格局产生大的影响。使用数据云的企业目前大部分是大型企业或者 pre-IPO 的互联网企业,当然,也有小部分中型企业,或者创业型的中小型企业。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21