京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。 数据挖掘中决策树是一种经常要用到的技术,可以用于分析数据,同样也可以用来作预测。
决策树,其结构和树非常相似,因此得其名决策树。决策树具有树形的结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。
例如:
按照豆腐脑的冷热、甜咸和是否含有大蒜构建决策树,对其属性的测试,在最终的叶节点决定该豆腐脑吃还是不吃。
分类树(决策树)是一种十分常用的将决策树应用于分类的机器学习方法。他是一种监管学习,所谓监管学习就是给定一堆样本,每个样本都有一组属性(特征)和一个类别(分类信息/目标),这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。
其原理在于,每个决策树都表述了一种树型结构,它由它的分支来对该类型的对象依靠属性进行分类。每个决策树可以依靠对源数据库的分割进行数据测试。这个过程可以递归式的对树进行修剪。 当不能再进行分割或一个单独的类可以被应用于某一分支时,递归过程就完成了。
机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。数据挖掘中决策树是一种经常要用到的技术,可以用于分析数据,同样也可以用来作预测。从数据产生决策树的机器学习技术叫做决策树学习, 通俗说就是决策树。
目前常用的决策树算法有ID3算法、改进的C4.5算法和CART算法。
决策树的特点
1.多层次的决策树形式易于理解;
2.只适用于标称型数据,对连续性数据处理得不好;
2、ID3算法
ID3算法最早是由罗斯昆(J. Ross Quinlan)于1975年在悉尼大学提出的一种分类预测算法,算法以信息论为基础,其核心是“信息熵”。ID3算法通过计算每个属性的信息增益,认为信息增益高的是好属性,每次划分选取信息增益最高的属性为划分标准,重复这个过程,直至生成一个能完美分类训练样例的决策树。
信息熵(Entropy):
,其中p(xi)是选择i的概率。
熵越高,表示混合的数据越多。信息增益(Information Gain):
T是划分之后的分支集合,p(t)是该分支集合在原本的父集合中出现的概率,H(t)是该子集合的信息熵。
3.ID3算法与决策树的流程
(1)数据准备:需要对数值型数据进行离散化
(2)ID3算法构建决策树:
如果数据集类别完全相同,则停止划分
否则,继续划分决策树:
计算信息熵和信息增益来选择最好的数据集划分方法;
划分数据集
创建分支节点:
对每个分支进行判定是否类别相同,如果相同停止划分,不同按照上述方法进行划分。
二、Python算法实现
创建 trees.py文件,在其中创建构建决策树的函数。
首先构建一组测试数据:
0. 构造函数createDataSet:
def createDataSet():
dataSet=[[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,1,'no']]
labels=['no surfacing','flippers']
return dataSet,labels
在Python控制台测试构造函数
#测试下构造的数据Out[5]: ['no surfacing', 'flippers']
2.1 计算信息熵
from math import log
def calcShannonEnt(dataSet):
numEntries = len(dataSet) #nrows
#为所有的分类类目创建字典
labelCounts ={}
for featVec in dataSet:
currentLable=featVec[-1] #取得最后一列数据
if currentLable not in labelCounts.keys():
labelCounts[currentLable]=0
labelCounts[currentLable]+=1
#计算香农熵
shannonEnt=0.0
for key in labelCounts:
prob = float(labelCounts[key]) / numEntries
shannonEnt -= prob * log(prob, 2)
return shannonEnt
利用构造的数据测试calcShannonEnt:
#Python console
In [6]: trees.calcShannonEnt(myDat)
...:
Out[6]: 0.9709505944546686
2.2 按照最大信息增益划分数据集
#定义按照某个特征进行划分的函数splitDataSet在控制台中测试这两个函数:
#测试按照特征划分数据集的函数Out[14]: 0
2.3 创建决策树构造函数createTree
import operater以之前构造的测试数据为例,对决策树构造函数进行测试,在python控制台进行输入:
#决策树构造函数测试可以看到,最后生成的决策树myTree是一个多层嵌套的字典。
2.4 决策树运用于分类
#输入三个变量(决策树,属性特征标签,测试的数据)对决策树分类函数进行测试:
In [29]: reload(trees)Out[35]: 'yes'
2.5 决策树的存储
如果每次都需要训练样本集来构建决策树,费时费力,特别是数据很大的时候,每次重新构建决策树浪费时间。因此可以将已经创建的决策树(如字典形式)保存在硬盘上,需要使用的时候直接读取就好。
(1)存储函数
在工作目录下存在一个名为’classifierStorage.txt’的txt文档,该文档 保存了myTree的决策树信息,需要使用的时候直接调出使用。
三、使用Matplotlib绘制决策树
import matplotlib.pyplot as plt
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei'] #否则中文无法正常显示
decisionNode=dict(boxstyle='sawtooth',fc='0.8') #决策点样式
leafNode=dict(boxstyle='round4',fc='0.8') #叶节点样式
arrow_args=dict(arrowstyle='<-') #箭头样式
def plotNode(nodeTxt,centerPt,parentPt,nodeType):
createPlot.ax1.annotate(nodeTxt,xy=parentPt,xycoords='axes fraction',
xytext=centerPt,textcoords='axes fraction',
va='center',ha='center',bbox=nodeType,arrowprops=arrow_args)
def createPlot():
fig=plt.figure(1,facecolor='white')
fig.clf()
createPlot.ax1=plt.subplot(111,frameon=False)
plotNode('决策节点',(0.5,0.1),(0.1,0.5),decisionNode)
plotNode('叶节点',(0.8,0.1),(0.3,0.8),leafNode)
plt.show()
#测试
#获取叶节点数量(广度)
def getNumLeafs(myTree):
numLeafs=0
firstStr=list(myTree.keys())[0]#'dict_keys' object does not support indexing
secondDict=myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict':
numLeafs+=getNumLeafs(secondDict[key])
else:numLeafs+=1
return numLeafs
#获取树的深度的函数(深度)
def getTreeDepth(myTree):
maxDepth=0
firstStr=list(myTree.keys())[0]
secondDict=myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict':
thisDepth=1+getTreeDepth(secondDict[key])
else: thisDepth=1
if thisDepth > maxDepth:
maxDepth=thisDepth
return maxDepth
#定义一个预先创建树的函数
def retrieveTree(i):
listOfTrees=[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
{'no surfacing': {0: 'no', 1: {'flippers': {0: {'head':{0:'no', 1: 'yes'}},1:'no'}}}}
]
return listOfTrees[i]
#定义在父子节点之间填充文本信息的函数
def plotMidText(cntrPt,parentPt,txtString):
xMid=(parentPt[0]-cntrPt[0])/2+cntrPt[0]
yMid=(parentPt[1]-cntrPt[1])/2+cntrPt[1]
createPlot.ax1.text(xMid,yMid,txtString)
#定义树绘制的函数
def plotTree(myTree,parentPt,nodeTxt):
numLeafs=getNumLeafs(myTree)
depth=getTreeDepth(myTree)
firstStr=list(myTree.keys())[0]
cntrPt=(plotTree.xOff+(1.0+float(numLeafs))/2/plotTree.totalW,plotTree.yOff)
plotMidText(cntrPt,parentPt,nodeTxt)
plotNode(firstStr,cntrPt,parentPt,decisionNode)
secondDict=myTree[firstStr]
plotTree.yOff=plotTree.yOff -1/plotTree.totalD
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict':
plotTree(secondDict[key],cntrPt,str(key))
else:
plotTree.xOff=plotTree.xOff+1.0/plotTree.totalW
plotNode(secondDict[key],(plotTree.xOff,plotTree.yOff),cntrPt,leafNode)
plotMidText((plotTree.xOff,plotTree.yOff),cntrPt,str(key))
plotTree.yOff=plotTree.yOff+1/plotTree.totalD
#定义主函数,来调用其它函数
def createPlot(inTree):
fig=plt.figure(1,facecolor='white')
fig.clf()
axprops=dict(xticks=[],yticks=[])
createPlot.ax1=plt.subplot(111,frameon=False,**axprops)
plotTree.totalW=float(getNumLeafs(inTree))
plotTree.totalD=float(getTreeDepth(inTree))
plotTree.xOff=-0.5/plotTree.totalW;plotTree.yOff=1.0;
plotTree(inTree,(0.5,1.0),'')
plt.show()
对绘制决策树图的函数进行测试(控制台):
In [26]: reload(treeplotter)
...:
Out[26]: <module 'treeplotter' from 'G:\\Workspaces\\MachineLearning\\treeplotter.py'>
In [27]: myTree=treeplotter.retrieveTree(0)
...:
In [28]: treeplotter.createPlot(myTree)
...:
得到决策树图:
隐形眼镜的数据集包含了患者的四个属性age,prescript,stigmatic,tearRate,利用这些数据构建决策树,并通过Matplotlib绘制出决策树的树状图。
附lenses.txt数据:
得到图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05