以云计算与大数据为代表的信息技术是电力行业未来发展核心
在全球新一轮科技革命和产业变革中,以云计算、大数据为代表的信息技术,与智能电网为代表的电力技术高度融合,将构建能源发展的新格局、激发经济增长的新活力、开启社会美好新生活、开启人类文明的新篇章。
今年8月,国务院公布了《“十三五”国家科技创新规划》,规划提到了9大重点工程,包括种业自主创新、煤炭清洁高效利用、智能电网、天地一体化信息网络、大数据、智能制造和机器人、重点新材料研发及应用、京津冀环境综合治理和健康保障。其中多个工程与能源电力相关。
电力大数据是电力行业的重点研究领域。美国电科院早在2012年就启动智能电网数据研究项目,研究在输配电上的大数据应用;美国太平洋燃气电力公司、加拿大的电力公司也基于用户用电数据开展了大数据技术应用研究;美国一家能源及排放管理公司与IBM公司合作开发,2014年发布了针对智能电网的大数据分析系统;2014年4月,Oracle数据库管理系统又提出了智能电网大数据公共数据模型。
法国、德国、英国、加拿大等国外电力公司则通过安装智能电表,对用户用电数据进行实时测量,计算出合理的用电消费计划并推荐给用户。
2013年,中国电机工程学会发布了《电力大数据发展白皮书》,国家科技部2014年下达了3项863项目,支持智能电网大数据研究。自2012年以来,国家电网公司启动了多项智能电网大数据研究项目,如江苏省电力公司于2013年初率先开始建设营销大数据智能分析系统,开展了基于大数据的客户服务新模式应用开发研究;北京市电力公司等也正在积极推进营配数据一体化基础上的智能电网大数据应用研究。
目前,国家电网公司全网入池服务器总数量5000多台,初步实现全网资源池的统一视图和资源基本可控、可调,是国内最大的企业基础设施私有云,节省了大量的服务器采购成本、机房空间和运维成本。
从近年来电力行业信息化发展趋势来看,电力大数据已成为电力行业发展的核心。主要体现在以下几个方面:
第一,云计算、大数据与智能电网都与国家未来的发展战略密切相关。云计算、数据和智能电网的研究都已经被列入国务院2015年发布的《关于积极推进“互联网+”行动的指导意见》。大数据和智能电网还被列入了《“十三五”国家科技创新规划》的9大重大工程项目。
第二,企业私有云和混合云将成为未来云计算的主要发展方向。国网信通产业集团下属中电普华信息技术有限公司在国家“十二五”建设期间,在企业云平台建设方面已经取得丰硕的成果,所开发的“国家电网软硬件资源池”和“云资源管理平台”项目,已经在国家电网总部及27个国家电网省电力公司得到了全面的部署。
第三,电力大数据既是云计算上的主要应用,又为云计算发展提供了新的动力。智能电网提供的电网运行数据和海量用户数据,为电力大数据分析提供了坚实的基础。
第四,全球能源互联网能够让我们跳出地球看地球。如果我们能够把世界上最大的三个电网:美国电网、欧洲电网和中国电网联结起来,就能够实现美国、欧洲和中国三大区域的电力自动调度和削峰填谷,为解决全世界的能源短缺、气候变暖及环境污染等问题打下坚实的基础。
在当前科技飞速发展的时代,以“大云物移”为代表的最新科技正引领国家信息技术的发展方向,并推动全球能源互联网的迅猛发展,成为传统产业升级和新兴产业发展的核心动力。
根据国家“一带一路”发展战略,国家电网公司提出了建设全球能源互联网的宏伟构想。建设网架坚强、广泛互联、高度智能、开放互动的全球能源互联网,需要广泛应用“大云物移”等新技术。
电力大数据能够为电力行业带来效益上的提升。2012年,美国智能电表的运作台数为1.39亿台,2020年将达到3.77亿台。美国德克萨斯州能源公司服务2000万居民,推出了智能电表技术为客户带来现实利益,客户通过现金返还计划获得3000万美金。大数据在智能电网上的应用使美国每年能耗降低10%,每年节省800亿美元新建电厂的费用。
数字化和云化正在改变着我们的工作和生活,也在改变现有的商业模式。数字化与云化转型和成为数字化与云化企业是每个企业的战略选择,而电力行业的数字化与云化转型的目标就是智能电网。
研究表明,电力大数据市场潜力巨大,预计到2019年全球市场空间将达到55亿美元,年复合增长率25%。美国电科院调查显示当前世界仅有不到5%的电力公司已完成大数据基础设施构建,预计5年后将提升至20%~30%。
电力大数据技术立足于电力系统业务服务需求,根植于云计算,以云计算技术为基础。未来,云平台是下一代企业IT构架必不可少的组成部分,是企业发展不可或缺的技术,企业IT云化是企业IT转型的关键。云计算能够整合智能电网系统内部计算处理和存储资源,提高电网处理和交互能力,成为电网强有力的技术支撑。
利用云计算等新技术,也可使信息流和业务流贯穿能源生产、传输、消费全过程,使生产者、消费者平等参与能源交易与创新,持续推动能源生产和消费革命。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30