企业大数据应用的拓展之路
大数据的应用模式
企业日常经营中,与数据相关的工作可划分为3个层次,分别是:数据、产品、商业。与之相对应,对大数据的应用模式分别为数据分析、数据模型、数据业务。
1.数据层面。主要围绕数据本身开展“数据分析”的工作,对各类数据的统计分析是主要形式。企业日常经营活动中会产生各种各样的数据,通过使用数据库软件、编写脚本和程序、利用各种数据挖掘软件可以从数据中得到各种基本统计信息,例如业务量、客户增长率、财务指标情况、风险指标变化,等等。“数据分析”工作具有明确的目标指向性,工作过程相对明确,工作效果易显现。
2.产品层面。当数据和产品之间建立起紧密的联系,基于数据而研发的大量“数据模型”就成为各类产品的重要组成部分,从“数据模型”中发现的规律成为产品运营和优化的重要依据。例如,在面向C端用户的产品中,可以通过分析用户的历史行为特征数据形成用户画像模型,据此提供个性化推荐功能,还可以通过分析海量用户在使用产品时过程路径的特点形成用户操作模型,据此优化产品的业务流程设计;在面向B端用户的产品中,可以通过分析其历史经营数据、进行同业数据横向比较等多种方式,形成经营特征模型,提供丰富的经营决策支持功能。“数据模型”正日益成为各类产品不可或缺的一部分,借助“数据模型”,数据对产品在功能设计、运营全流程的支持作用日益凸显。
3.商业层面。数据不再是其它工作的辅助、不再是配角,以数据价值挖掘和利用为核心的“数据业务”成为业务发展的重要支撑。“数据业务”能为业务发展开拓新的方向,是业务转型和创新发展的重要抓手。虽然这3个层次的工作没有必然的先后顺序,但一般的企业都从“数据分析”入手,逐步向“数据模型”演进,并期待开启“数据业务”。“数据分析”中积累的经验能为“数据模型”的研发提供很好的基础,“数据模型”中获得的认知与洞察是“数据业务”顺利开展的重要逻辑支撑。不同层面的数据工作各有其用武之地,都能体现各自的价值,为特定工作带来帮助。
推动大数据应用的关键举措
为能够顺利推动大数据应用成功,当前需要从机制保障、技术支撑、数据治理、应用设计、合作联动等方面发力。
1.机制保障。对很多企业来说,当前正处于大数据应用发展的战略机遇期。需要企业在从组织、财力和人力等方面给予大数据工作相应的保障,对大数据项目采取相对灵活的财务预算及收益计算政策,通过引进高水平人才、进行系统化培训、激励政策倾斜等措施,打造出高水平、多层次的数据人才队伍,等等。
2.技术支撑。要想大数据应用取得成功,建立以统一的大数据平台为核心的技术支撑体系必不可少。大数据平台应具备海量的数据存储能力、快速的分析挖掘能力、高效的数据访问能力以及丰富的可视化展现能力等基础能力,形成面向数据内容、服务、产品的立体架构,满足企业内外部各类数据服务需求。在大数据平台的建设过程中,应注意做好传统技术与新兴技术的适当运用、大数据平台与其它应用系统的高效互通、统一处理与分散应用的合理布局、长远规划与眼前需求的综合考量等工作。
3.数据治理。完善的数据治理可以确保数据的可用性、完整性及一致性,是大数据平台良性运转、数据得到合理管理、数据价值得以充分利用的必要条件。数据治理是企业大数据战略实施的重要基础,只有在企业内部建立一套行之有效的数据治理体系,企业才会真正进入商业智能的大数据时代。数据治理是一项长期、艰苦的重要工作,需要得到从上到下的高度重视和自始至终的一贯执行,才能确保企业大数据战略的长期有效执行。
4.应用设计。大数据的价值最终需要通过大数据的各类应用模式来体现。在“数据分析”层面,应充分挖掘大数据对智能运营、精准营销、客户服务、风险管控等各方面工作的支撑作用,提高工作效率,优化工作模式。在“数据模型”层面,一方面,需要为各类产品设计丰富的大数据元素,提供相应的数据支持,丰富产品功能,优化用户体验,增强用户粘性;另一方面,也需要在各类产品设计中贯彻大数据思维,将收集各类数据、获取用户授权、记录行为模式、产品自身评估和优化等工作渗透到产品设计、研发和运营的各个环节,为大数据长期发展提供坚实的数据基础。在“数据业务”层面,需要充分利用好内外部各类数据,规划、设计和研发以大数据服务为核心的创新产品,丰富产品体系,形成新的业务收入来源。
5.合作联动。企业的大数据应用想要取得更大的成功,良好的外部合作与联动也是重要的途径。在数据内容的丰富、数据处理技术和价值挖掘的经验借鉴、数据应用的推广、数据工作影响力的拓展等诸多方面,合适的外部合作伙伴往往能提供很好的帮助,起到事半功倍的效果。除此之外,企业在大数据应用开拓方面,选择专业的数据服务商也至关重要。中科点击作为行业大数据应用专家,凭借多年大数据应用实战经验,形成了一套标准化的产品开发模式,已经为汽车、金融、教育、电商、医美等众多行业提供了定制化的大数据服务。
当前,我们正在进入一个崭新的大数据时代。各界正逐渐达成这样的普遍共识:数据是企业的重要战略资源,大数据应用能力将会成为企业成长和竞争的关键。对企业来说,选择正确的大数据发展道路,是大数据战略得以落实的首要条件。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31