Python中关于Sequence切片的下标问题详解
在python中, 切片是一个经常会使用到的语法, 不管是元组, 列表还是字符串, 一般语法就是:
sequence[ilow:ihigh:step] # ihigh,step 可为空; 为了简短易懂, 暂时排除step的用法考虑
先来简单示范下用法
sequence = [1,2,3,4,5]
sequence [ilow:ihigh] # 从ilow开始到ihigh-1结束
sequence [ilow:] # 从ilow开始直到末尾
sequence [:ihigh] # 从头部开始直到ihigh结束
sequence [:] # 复制整个列表
语法很简洁, 也很容易理解, 这种语法在我们日常使用中 是简单又好用, 但我相信在我们使用这种切片语法时, 都会习惯性谨遵一些规则:
ilow, ihigh均小于 sequece的长度
ilow < ihigh
因为在大部分情况下, 只有遵循上面的规则, 才能得到我们预期的结果! 可是如果我不遵循呢? 切片会怎样?
不管我们在使用元组, 列表还是字符串, 当我们想取中一个元素时, 我们会用到如下语法:
sequence = [1,2,3,4,5]
print sequence[1] # 输出2
print sequence[2] # 输出3
上面出现的 1,2 我们姑且称之为下标, 不管是元组, 列表还是字符串, 我们都能通过下标来取出对应的值, 但是如果下标超过对象的长度, 那么将触发索引异常(IndexError)
sequence = [1,2,3,4,5]
print sequence[15]
### 输出 ###
Traceback (most recent call last):
File "test.py", line 2, in <module>
print a[20]
IndexError: list index out of range
那么对于切片呢? 两种语法很相似, 假设我 ilow 和 ihigh分别是10和20, 那么结果是怎样呢
情景重现
# version: python2.7
a = [1, 2, 3, 5]
print a[10:20] # 结果会报异常吗?
看到10和20, 完全超出了序列a的长度, 由于前面的代码, 或者以前的经验, 我们总会觉得这样肯定也会导致一个IndexError,那我们开终端来试验下:
>>> a = [1, 2, 3, 5]
>>> print a[10:20]
[]
结果居然是: [], 这感觉有点意思.是只有列表才会这么, 字符串呢, 元组呢?
>>> s = '23123123123'
>>> print s[400:2000]
''
>>> t = (1, 2, 3,4)
>>> print t[200: 1000]
()
结果都和列表的类似, 返回属于各自的空结果.
看到结果的我们眼泪掉下来, 不是返回一个IndexError, 而是直接返回空, 这让我们不禁想到, 其实语法相似, 背后的东西肯定还是不同的, 那我们下面一起来尝试去解释下这结果吧
原理分析
在揭开之前, 咱们要先搞清楚, python是怎样处理这个切片的, 可以通过dis模块来协助:
############# 切片 ################
[root@iZ23pynfq19Z ~]# cat test.py
a = [11,2,3,4]
print a[20:30]
#结果:
[root@iZ23pynfq19Z ~]# python -m dis test.py
1 0 LOAD_CONST 0 (11)
3 LOAD_CONST 1 (2)
6 LOAD_CONST 2 (3)
9 LOAD_CONST 3 (4)
12 BUILD_LIST 4
15 STORE_NAME 0 (a)
2 18 LOAD_NAME 0 (a)
21 LOAD_CONST 4 (20)
24 LOAD_CONST 5 (30)
27 SLICE+3
28 PRINT_ITEM
29 PRINT_NEWLINE
30 LOAD_CONST 6 (None)
33 RETURN_VALUE
############# 单下标取值 ################
[root@gitlab ~]# cat test2.py
a = [11,2,3,4]
print a[20]
#结果:
[root@gitlab ~]# python -m dis test2.py
1 0 LOAD_CONST 0 (11)
3 LOAD_CONST 1 (2)
6 LOAD_CONST 2 (3)
9 LOAD_CONST 3 (4)
12 BUILD_LIST 4
15 STORE_NAME 0 (a)
2 18 LOAD_NAME 0 (a)
21 LOAD_CONST 4 (20)
24 BINARY_SUBSCR
25 PRINT_ITEM
26 PRINT_NEWLINE
27 LOAD_CONST 5 (None)
30 RETURN_VALUE
在这简单介绍下dis模块, 有经验的老司机都知道, python在解释脚本时, 也是存在一个编译的过程, 编译的结果就是我们经常看到的pyc文件, 这里面codeobject对象组成的字节码, 而dis就是将这些字节码用比较可观的方式展示出来, 让我们看到执行的过程, 下面是dis的输出列解释:
第一列是数字是原始源代码的行号。
第二列是字节码的偏移量:LOAD_CONST在第0行.以此类推。
第三列是字节码人类可读的名字。它们是为程序员所准备的
第四列表示指令的参数
第五列是计算后的实际参数
前面就不赘述了, 就是读常量存变量的过程, 最主要的区别就是: test.py 切片是使用了字节码 SLICE+3实现的, 而test2.py 单下标取值主要通过字节码BINARY_SUBSCR实现的,如同我们猜测的一样, 相似的语法却是截然不同的代码.因为我们要展开讨论的是切片(SLICE+3), 所以就不再展开BINARY_SUBSCR, 感兴趣的童鞋可以查看相关源码了解具体实现, 位置: python/object/ceval.c
那我们下面来展开讨论下 SLICE+3
/*取自: python2.7 python/ceval.c */
// 第一步:
PyEval_EvalFrameEx(PyFrameObject *f, int throwflag)
{
.... // 省略n行代码
TARGET_WITH_IMPL_NOARG(SLICE, _slice)
TARGET_WITH_IMPL_NOARG(SLICE_1, _slice)
TARGET_WITH_IMPL_NOARG(SLICE_2, _slice)
TARGET_WITH_IMPL_NOARG(SLICE_3, _slice)
_slice:
{
if ((opcode-SLICE) & 2)
w = POP();
else
w = NULL;
if ((opcode-SLICE) & 1)
v = POP();
else
v = NULL;
u = TOP();
x = apply_slice(u, v, w); // 取出v: ilow, w: ihigh, 然后调用apply_slice
Py_DECREF(u);
Py_XDECREF(v);
Py_XDECREF(w);
SET_TOP(x);
if (x != NULL) DISPATCH();
break;
}
.... // 省略n行代码
}
// 第二步:
apply_slice(PyObject *u, PyObject *v, PyObject *w) /* return u[v:w] */
{
PyTypeObject *tp = u->ob_type;
PySequenceMethods *sq = tp->tp_as_sequence;
if (sq && sq->sq_slice && ISINDEX(v) && ISINDEX(w)) { // v,w的类型检查,要整型/长整型对象
Py_ssize_t ilow = 0, ihigh = PY_SSIZE_T_MAX;
if (!_PyEval_SliceIndex(v, &ilow)) // 将v对象再做检查, 并将其值转换出来,存给ilow
return NULL;
if (!_PyEval_SliceIndex(w, &ihigh)) // 同上
return NULL;
return PySequence_GetSlice(u, ilow, ihigh); // 获取u对象对应的切片函数
}
else {
PyObject *slice = PySlice_New(v, w, NULL);
if (slice != NULL) {
PyObject *res = PyObject_GetItem(u, slice);
Py_DECREF(slice);
return res;
}
else
return NULL;
}
// 第三步:
PySequence_GetSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2)
{
PySequenceMethods *m;
PyMappingMethods *mp;
if (!s) return null_error();
m = s->ob_type->tp_as_sequence;
if (m && m->sq_slice) {
if (i1 < 0 || i2 < 0) {
if (m->sq_length) {
// 先做个简单的初始化, 如果左右下表小于, 将其加上sequence长度使其归为0
Py_ssize_t l = (*m->sq_length)(s);
if (l < 0)
return NULL;
if (i1 < 0)
i1 += l;
if (i2 < 0)
i2 += l;
}
}
// 真正调用对象的sq_slice函数, 来执行切片的操作
return m->sq_slice(s, i1, i2);
} else if ((mp = s->ob_type->tp_as_mapping) && mp->mp_subscript) {
PyObject *res;
PyObject *slice = _PySlice_FromIndices(i1, i2);
if (!slice)
return NULL;
res = mp->mp_subscript(s, slice);
Py_DECREF(slice);
return res;
}
return type_error("'%.200s' object is unsliceable", s);
虽然上面的代码有点长, 不过关键地方都已经注释出来, 而我们也只需要关注那些地方就足够了. 如上, 我们知道最终是要执行 m->sq_slice(s, i1, i2) , 但是这个sq_slice有点特别, 因为不同的对象, 它所对应的函数不同, 下面是各自的对应函数:
// 字符串对象
StringObject.c: (ssizessizeargfunc)string_slice, /*sq_slice*/
// 列表对象
ListObject.c: (ssizessizeargfunc)list_slice, /* sq_slice */
// 元组
TupleObject.c: (ssizessizeargfunc)tupleslice, /* sq_slice */
因为他们三个的函数实现大致相同, 所以我们只分析其中一个就可以了, 下面是对列表的切片函数分析:
/* 取自ListObject.c */
static PyObject *
list_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh)
{
PyListObject *np;
PyObject **src, **dest;
Py_ssize_t i, len;
if (ilow < 0)
ilow = 0;
else if (ilow > Py_SIZE(a)) // 如果ilow大于a长度, 那么重新赋值为a的长度
ilow = Py_SIZE(a);
if (ihigh < ilow)
ihigh = ilow;
else if (ihigh > Py_SIZE(a)) // 如果ihigh大于a长度, 那么重新赋值为a的长度
ihigh = Py_SIZE(a);
len = ihigh - ilow;
np = (PyListObject *) PyList_New(len); // 创建一个ihigh - ilow的新列表对象
if (np == NULL)
return NULL;
src = a->ob_item + ilow;
dest = np->ob_item;
for (i = 0; i < len; i++) { // 将a处于该范围内的成员, 添加到新列表对象
PyObject *v = src[i];
Py_INCREF(v);
dest[i] = v;
}
return (PyObject *)np;
}
结论
从上面的sq_slice函数对应的切片函数可以看到, 如果在使用切片时, 左右下标都大于sequence的长度时, 都将会被重新赋值成sequence的长度, 所以咱们一开始的切片: print a[10:20] , 实际上运行的是: print a4:4 . 通过这次的分析, 以后在遇到下标大于对象长度的切片, 应该不会再懵逼了~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06