大数据时代的艺术金融
在国内,一场发轫于互联网经济的大数据效应在持续发酵,在艺术金融领域也初现端倪。事实上,这样一场影响生活、工作与思维的大变革不仅在改变商业模式,而且也对公共卫生医疗等诸多方面产生实质性影响。从目前的种种迹象来看,艺术金融已经被这一效应所波及。
肇始于互联网金融,大数据的艺术金融1.0模式是各类艺术品电商平台的建设。与传统电商相比,目前艺术品电商还处于平台架构建设阶段,关注艺术品消费阶层与销售渠道的拓展,主攻中低端的艺术品投资收藏市场,甚至还没有达到小数据层面。据文化部发布的《2013中国艺术品市场年度报告》显示,截至2013年底,我国包括从事在线拍卖业务的拍卖公司的艺术品交易电商不低于2000家。但由于鉴定、仓储、物流、售后服务等一系列环节与机制的不完善,这一艺术品线上消费市场近年在增量之下并没有质的提升。另外,近期维权纠纷又将艺术品电商推到风口浪尖。艺术金融的电商平台布局恐怕要厘清与传统的艺术品一、二级市场的关系,实现差异化的商业模式。如果能进一步借助网络经济的特点,有关艺术品市场的大数据分析是相当值得期待的。
值得注意的是,今年春拍,国内研究机构也开始逐步着手研究大数据背后的艺术金融。由雅昌艺术市场监测中心(AMMA) 出品的《中国艺术品拍卖市场调查报告2014春》(以下简称《报告》)体现了这样一种征候。艺术金融的大数据研究主要体现在以下两个方面:在艺术金融的宏观经济、政策环境层面,除了过往的将艺术市场成交额增速与对经济反应敏感的狭义货币M1比对,研究艺术品二级市场与宏观经济联动关系之外,还进一步细化了几大投资增长极的研究,将艺术指数与房地产指数、股票指数计算、比较,研究艺术品资本属性的优劣势;在艺术金融的微观市场层面,通过计算反映风险收益比的标准离差率研究艺术品的风险收益比。
鉴于目前拍卖行业法律法规的限制(例如,对于信息保密的界定),也就不难理解目前国内机构的这些研究还处于初步阶段。例如,在微观市场研究层面,《报告》所研究的案例相对有限,仅从风险收益比的实际数据论证了经常见诸媒体的论点:中国艺术品市场的长期投资保值属性突出。
如果我们从更大范围的数据出发,可能会得出更多有关艺术金融的宏观环境与微观市场环境的更有意思的论点。从宏观上讲,艺术品金融的走势依托于经济大环境和其他投资领域的现时和长远趋势的状况。比如GDP的增长、消费物价指数的变化、宏观经济调控政策对非必需品消费的管控趋势等,另外,一些非可把控的意外性风险:如石油危机、金融危机等,这些是对大的艺术品金融气候的把握。诸如根据对股市、房地产等高回报率投资领域的发展态势的判断,可以预估艺术品投资市场资金结构的变化。
另外,目前艺术金融的数据主要来自二级市场,如果从二级市场进一步拓展到一级市场,将能更全面地反映整个艺术市场的生态环境。当然,这还需要行业监管、法律法规的到位。初步估计,还有待进一步展开分析艺术品市场微观环境的相关数据参数包括但不限于如下:一级市场方面,国内外画廊、操作模式偏重学术价值挖掘还是偏重商业炒作、潜在资金投放量、推广计划、代理艺术家的综合情况、平均培育艺术家所需的时间、年成交额排名状况、收藏家的综合情况等。二级市场方面,通过历年的单件、专场和整体成交额、成交率分析不同年龄、教育背景、地域性、行业背景的高端客户对不同板块的关注程度,以预测未来市场的走向趋势:市场买家群体的内在变化,潜在资金投放量中老钱、新钱的比例变化,收藏、投资趣味的变化,地域性的差异所体现出来的不同地域的喜好、特点,以及识别某些艺术家的作品是否存在违规炒作的现象等。
此外,研究和建立艺术品的传承、出处、著录等学术档案登记制度也将成为艺术金融大数据研究的重要方面。这样涵盖艺术研究——艺术市场微观环境——艺术市场宏观环境的大数据分析必将使得艺术金融模式从现有的发展路径中有所突破。
数据分析咨询请扫描二维码
在如今的数据驱动时代,掌握数据分析的工具和方法不仅是提高工作效率的关键,也是开拓职业机会的重要技能。数据分析涉及从数据的 ...
2024-11-08在现代商业环境中,企业正在逐步认识到数据挖掘技术在客户行为分析中的重要性。通过深度分析客户数据,这项技术不仅可以帮助企业 ...
2024-11-08数据挖掘分析是从大量数据中发现隐藏模式和有用信息的过程。尤其是在图数据挖掘中,提供了分析复杂关系和结构的独特视角。图数据 ...
2024-11-08在当今快速发展的商业环境中,提高运营效率已成为企业取得成功的关键因素。企业需要通过优化工作流程、利用技术创新和提升员工技 ...
2024-11-08Python 是一门非常适合初学者学习的编程语言。其简洁明了的语法、丰富的功能库,以及广泛的应用领域,使其成为学习编程的理想选 ...
2024-11-08在当今快速变化的商业环境中,金融数字化已经成为中小企业(SMEs)发展的关键驱动力。通过采用数字工具和技术,中小企业能够提高 ...
2024-11-08中小企业在全球经济中扮演着重要角色,然而,面对数字化浪潮,这些企业如何有效转型成为一大挑战。数字化转型不仅是技术的升级, ...
2024-11-08选择合适的数据分析方法是数据分析流程中的关键环节。它影响最终结论的准确性和可信度。在这个过程中,需要综合考虑数据的性质、 ...
2024-11-08在当今数据驱动的商业环境中,数据分析师扮演着至关重要的角色。他们帮助企业从大量数据中提取有用的洞察,从而推动决策制定和战 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,数据挖掘发挥着至关重要的作用。它不仅帮助企业从庞大的数据集中提取有价值的信息,还为企业的决策和业务运营 ...
2024-11-07数据分析可视化是一种通过图形化方式展现数据的技术,它使复杂的数据变得直观易懂,从而帮助我们更好地做出决策。在这个快速发展 ...
2024-11-07数据分析是一项至关重要的技能,尤其在当今数据驱动的世界中。Python以其强大的库和简单的语法成为了数据分析领域的佼佼者。本文 ...
2024-11-07在现代数据驱动的环境中,数据分析师扮演着至关重要的角色。他们需要掌握多种工具,以满足数据分析、处理和可视化的需求。无论是 ...
2024-11-07作为一名业务分析师,你将发现自己处于企业决策和数据驱动战略之间的桥梁位置。这个角色要求掌握一系列技能,以便有效地将数据转 ...
2024-11-07CDA中科院城市环境研究所(厦门)内训圆满成功 2017年9月12日-15日,CDA数据分析师在中科院城市环境研究所(厦门)进行了 ...
2024-11-07数据分析是现代商业和研究领域不可或缺的重要工具。无论是为了提高业务决策的准确性,还是为了发掘隐藏在数据中的潜在价值,了解 ...
2024-11-06数据分析是一个精细且有序的过程,旨在从海量数据中提取有用的信息,为决策提供有力支持。无论你是新手还是有经验的分析师,理解 ...
2024-11-06在当今竞争激烈的商业环境中,业务分析师(Business Analyst, BA)的角色变得愈加重要。随着企业对数据驱动决策的依赖加深,业务 ...
2024-11-06