SPSS Modeler数据挖掘:回归分析
1 模型定义
回归分析法是最基本的数据分析方法,回归预测就是利用回归分析方法,根据一个或一组自变量的变动情况预测与其相关的某随机变量的未来值。
回归分析是研究一个变量(被解释变量)与另一个或几个变量(解释变量)的具体依赖关系的计算方法和理论。
回归分析的主要内容:
从一组数据出发,确定某些变量之间的定量关系,即建立数学模型并估计其中的未知参数,进行可信程度检验,一般用最小二乘法估计参数。判断哪个(或哪些)自变量的影响是显著的,哪些是不显著的,将影响显著的选入模型,而提出影响不显著的,通常应用逐步回回、向前回归和向后回归等方法。
利用所求的关系式对某一生产过程进行预测或控制。
回归分析研究的主要问题:
确定Y与X之间的关系表达式(回归方程)
对求得的回归方程的可信度进行统计检验
判断自变量X对因变量Y有误影响极其程度
利用所得的回归方程进行变量的预测和控
2 模型应用
回归分析时分析现象之间相关的具体形式,确定其因果关系,并用数学模型来边线其具体关系。
一般来讲,回归分析时通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好地拟合,则可以根据自变量做出进一步预测。
R2、F检验值和T检验值。
3 建模步骤
建立变量
建立预测模型
进行相关分析
计算预测误差
确定预测值
4 应用实例:客户流失因素分析
研究背景
随着电信企业的发展,企业之间的竞争不断加剧,电信运营商在不断地推出新的业务与套餐,一次占领市场竞争高地。但是,与此同时,也大大增加了客户的不稳定性,而数据挖掘技术的应用,有效地降低了客户离网率。因此,研究数据挖掘技术在电信客户流失预警中的应用有必要性。
对于电信企业而言, 海量的客户数据是企业的一笔巨大财富,简单而讲企业若能够及时准确地挖掘出数据中的信息,并且从中分析出隐含的价值信息与知识,就能制定弧科学的运营方案,才能更好地为客户服务,进而在市场竞争中取得一席之地。
所谓的客户流失预警模型的构建就是在基于数据挖掘技术的基础上,对电信运营状态及客户状态的一种分析与判定系统,从本质上讲,就是对数据特征的一种挖掘,同时,也是一种分类问题。
客户信息主要分为两大类:一种是由离网倾向的客户;另一种是无离网倾向的客户。以数据挖掘技术为基础,对已离网客户的信息进行特征分析,进行总结归纳,并作参考,若企业产生新的客户信息时,一次来识别其是否存在离网倾向,确定其是否在企业对客户维护开销范围外,若低于次开销值,则说明其不具有任何产生价值,相关信息应该删除。
5 研究方法
在客户流失分析系统中,根据以前拥有的客户流失数据建立客户属性、服务属性、客户消费数据与客户流失可能关联的数学模型,找出客户属性、服务属性、客户消费数据与客户流失的最终状态的关系。
4.2.3 数据分析
定义数据源
数据理解
将值为0、1的变量设为标志字段
将客户类别(custcat)设置为目标
数据准备
过滤掉无关字段
建立模型
模型采用:多项式 和 逐步法 的回归分析方法;
专家模式
模型评估
评估模型的优劣是建模过程的必须步骤,本例中采用数据审核节点和数据评估节点来对模型的结果进行评估。
研究结论
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14