大数据平台助力核与辐射安全监管
核能开发利用是大国发展的战略必争之地,也是调整能源结构、应对气候变化和建设生态文明,进而确保国家安全的重要手段。虽然我国核与辐射安全监管能力不断提升,但仍面临诸多挑战。
为适应新形势和新要求,核与辐射安全监管的工作目标就是推动核安全监管体系和监管能力尽快实现现代化。如何利用大数据加快核与辐射安全监管现代化进程,既是历史机遇,也是时代课题。
安全监管亟须现代化工具
我国自1991年第一座核电站——秦山核电站并网发电以来,截至2016年6月底,投入商业运行的核电机组共30台,正在建设的核电机组27台,数量已是全球第一。核能与核技术利用的快速发展为我国经济社会发展提供了强大的助推力,但也使得我国面临的核与辐射安全风险日益加大。
近年来,核与辐射安全监管的范围不断拓展,监管要求不断细化,任务不断加重,然而,由于缺乏总体规划,现有资源分散、人才匮乏、基础薄弱,亟须更多科学化、现代化工具对核与辐射安全监管的评审、监督、监测、应急、管理、决策提供技术支撑。
另外,目前社会公众对涉核项目的接受度降低已经成为当前制约核电、核技术利用发展、影响核与辐射安全监督的瓶颈。由于公众认知的不足或存在偏差,滋生抵制核能的错误倾向,进而抵制一些涉核项目的建设和立项。这种现象也对公众宣传、信息公开和公众参与等工作提出了更高的要求。
总而言之,当前,亟须利用信息化及大数据技术,推动我国核能与核辐射安全监管现代化进程。
大数据管理水平有待提高
大数据能否有效促进我国核与辐射安全监管工作的高效开展,主要取决于监管机构数据管理方式的转变、管理能力的提升和技术创新的速度。然而,当前我国核与辐射安全监管机构的数据管理意识和技术还难以满足大数据建设的需要,亟须采取各种措施以提高大数据管理水平。
为适应大数据环境,首先必须改进原有的数据收集制度,完善数据管理体制。由于大数据管理具有高度复杂性与专业性,需要安排专业人员负责管理。大数据概念相对新颖,涵盖的范围可能超出现有法律法规的规定与说明,保证大数据环境下的数据管理能够高效有序地进行,特别要保护国家秘密、企业秘密和个人信息不受侵犯,因此需要增加有关数据管理的法律规章。
其次要提升数据管理技术水平。大数据管理需要深度挖掘更具价值的指标数据,更好地服务决策制定与社会管理,这需要更加专业化与高效化的数据处理技术,需要高水平与高素养的专业数据处理人员,但当前我国核与辐射安全监管体系的数据处理技术还不能满足这些要求。
另外,大数据时代要对全体数据进行分析、利用,就要求在核与辐射安全监管数据的获取过程中,打破传统模式,不局限于宏观的基础数据,还要深入到中微观层面,收集尽可能全面而详细的数据。在此基础上,摒弃传统的“事件—分析因果关系—采取应对措施”模式,按照数据“收集—存储—分析—输出”的流程进行网格化管理,保证输出数据的科学性和精确性,精准把握相关事件发展的规律和倾向,预判事件发生的几率,防患于未然。
最后还应该转变数据管理的思维。目前,我国核与辐射安全监管信息化建设取得了一定成就,但有效地信息共享共用机制还尚未建立,诸多基础性数据仍只在各部门的系统和数据库中使用,形成了大量“信息孤岛”,造成了资源浪费,影响了数据价值的发挥。
树立大数据意识是核与辐射安全监管体系有效管理大数据的基本前提。通过数据共享,各部门间的物理界限将变得模糊,部门协作更为紧密、更加敏锐,以协同、高效的方式开展公共管理,并向社会公众提供更加优质的服务。
大数据平台建设策略
大数据建设可为核与辐射安全监管提供决策支持,在全面收集各类数据的基础上,参考国家政策发展规划、法规标准、地理信息、气象数据、人口分布等有关信息,利用大数据技术对各类问题进行建模、分析,可为我国核与辐射安全法律法规的制定、核安全与放射性污染防治规划的制定、核电厂厂址的选择、放射性废物的处理处置等提供技术保障与数据支撑。
而在大数据创新应用层面也不拘泥于传统的应用系统建设,在满足信息系统功能的前提下,拓展核安全监管设备数据、放射源管理数据、放射性废物管理数据等资源,深入探索业务数据之间的内涵联系及外延网络,建立能够实现资源协同共享的大数据业务支撑应用,消除信息孤岛,全面推动核与辐射安全监管的信息化和现代化水平。
夯实大数据基础能力是核与辐射安全监管的主要任务。结合国家核与辐射安全监管技术研发基地建设项目,应做好核与辐射安全监管数据中心的规划、设计和建设工作,充分利用云计算与云存储技术、整合现有网络资源、计算资源、存储资源、安全资源,对已有信息化成果进行合理利用;完善核与辐射安全监管领域相关基础设施,实现核与辐射安全监管大数据基础设施的集中管理、统一调度、整体运维与互联互通,为核与辐射安全监管大数据建设提供支撑。
另外,要提升核与辐射安全监管数据资源获取能力,在重要地区和重点核设施区域增加监测点数量,完善核辐射监测网络;利用物联网技术拓宽数据获取渠道,创新数据采集方式,提高实时监测能力。还需要通过核与辐射安全中心与各个核电厂之间的专线,获取电厂关键运行数据;通过政府数据共享交换平台接入其他基础数据资源。
为全面推广大数据应用,应利用先进的物联网技术、自动控制技术、通讯技术、传感技术、GIS技术、GPS技术、图像识别技术等,围绕放射安全管理全生命周期,建立以GPS—CPS定位及剂量率为检测单元,同时辅以视频技术和GIS地理信息系统区域移动放射源物联网在线监控系统,做到“防丢失、防偷盗、防泄露”,提升区域放射源监管水平,从而实现对高风险放射源的智能化识别、定位、跟踪、监控和报警,实时掌握动态信息、提高风险预测预警能力,并在紧急状态下给出应急响应与处理建议。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21