
R语言实现金融数据的时间序列分析及建模
一 移动平均
移动平均能消除数据中的季节变动和不规则变动。若序列中存在周期变动,则通常以周期为移动平均项数。移动平均法可以通过数据显示出数据长期趋势的变动规律。
R可用filter()函数做移动平均。用法:filter(data,filter,sides)
1、简单移动平均
简单移动平均就是将n个观测值的平均数作为第(n+1)/2个的拟合值。当n为偶数时,需进行二次移动平均。简单移动平均假设序列长期趋势的斜率不变。
以我国1992到2014年的季度GDP数据为例。
data<-read.csv("gdpq.csv")
tdata<-ts(data,start=1992,freq=4)
m1<-filter(tdata,filter=c(rep(1/4,4)))
plot(tdata,xlab="时间",ylab="gdp")
lines(m1,col="red",cex=1.5)
代码运行结果如上图,红色表示拟合值,黑色表示真实值。
2、二次移动平均
二次移动平均即在一次移动平均的基础上再进行一次移动平均。一般两次移动平均的项数是一致的。二次移动平均假设序列长期趋势的斜率是随时间的变化而变化的。
二次移动平均长期趋势的拟合公式为:at=2M1t−M2t,其中M1t 表示第一次移动平均的拟合值,M2t表示二次移动平均的拟合值。
同样以上述数据为例,进行二次移动平均。代码如下:
plot(tdata,type="l",xlab="时间",ylab="季度GDP")
m2<-filter(m1,filter=c(rep(1/4,4)),sides=1)
lines(2*m1-m2,col="red",cex=2)
代码运行结果如上图所示,红色为二次移动的拟合值。
二 指数平滑
指数平滑的思想与移动平均是一样的,只是随着时间间隔的增加,加权的权重会呈指数衰减。它认为时间间隔越远的数据对当期数据的影响越小。R调用的函数为
HoltWinters(data, alpha=, beta=, gamma=,seasonal=c(“additive”,”multiple”)…)
1、简单指数平滑
简单指数平滑假设序列中不存在季节变动和系统的趋势变化。模型公式为:
Xt=axt+(1−a)Xt−1,0<a<1
a为平滑系数,Xt 为拟合值,xt 为真实值。一般指定X0=x1 ,并且a越大,平滑程度越弱。R语言中有函数可以通过最小化一步预测误差平方和的方法估计出a。以2010年到2014年消费者新心指数为例,并预测2015年前6个月的值。代码如下:
> data<-read.csv("consumer_cf.csv")
> newdata<-ts(data[,2],start=c(2010,1),freq=12)
> plot(newdata,type="o",cex.axis=1.5,cex.lab=1.5,
+ xlab="时间",ylab="消费者信心指数")
> a<-HoltWinters(newdata,beta=F,gamma=F)
> b<-HoltWinters(newdata,alpha=0.5,beta=F,gamma=F) #估计参数a
> b
Holt-Winters exponential smoothing without trend and without seasonal component.
Call:
HoltWinters(x = newdata, alpha = 0.5, beta = F, gamma = F)
Smoothing parameters:
alpha: 0.5
beta : FALSE
gamma: FALSE
Coefficients:
[,1]
a 105.2898
> pdata<-predict(a,6,prediction.interval = T)
> plot(a,pdata,type="o",xlab="时间",ylab="消费者信心指数")
代码运行结果如上所示。用HoltWinters()函数估计出来的a=0.78,且向后预测值为图中红色部分,黑色为真实值。这种预测方法预测出的值往往不够精确,因为它没有考虑序列中存在的其他变动。
2、Holt_Winters指数平滑
Holt_Winters指数平滑考虑了序列中存在的季节变动,这种方法对存在季节变动的经济数据有较好的拟合效果,可以用来进行向后预测。
加法季节模型:
Xt=a∗(xt−st)+(1−a)(at−1+bt−1
bt=β∗(Xt−Xt−1)+(1−β)bt−1
st=γ∗(xt−Xt)+(1−γ)st−p
其中p为季节变动的周期长度。其他含义同上。以上述的GDP数据为例,用HoltWinters指数平滑法分解GDP的水平,斜率及季节变动水平,并预测未来5年的值。代码如下:
> data<-read.csv("gdpq.csv")
> tdata<-ts(data,start=1992,freq=4)
> gdp.hw<-HoltWinters(tdata,seasonal="multi")
> plot(gdp.hw$fitted,type="o",main="分解图")
> plot(gdp.hw,type="o")
> pdata<-predict(gdp.hw,n.ahead=4*5)
> pdata
Qtr1 Qtr2 Qtr3 Qtr4
2015 149826.6 168126.7 176640.3 192627.9
2016 161252.4 180708.2 189616.2 206523.1
2017 172678.2 193289.7 202592.1 220418.2
2018 184104.1 205871.2 215568.0 234313.4
2019 195529.9 218452.8 228543.8 248208.5
> ts.plot(tdata,pdata,type="o",lty=1:2,col=c("red","black"))
代码中采用了加法模型。序列的分解图如上图所示。第二个图为模型对数据的拟合图,第三个图的虚线部分为后5年的预测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05