python的dict,set,list,tuple应用详解
本文深入剖析了python中dict,set,list,tuple应用及对应示例,有助于读者对其概念及原理的掌握。具体如下:
1.字典(dict)
dict 用 {} 包围
dict.keys(),dict.values(),dict.items()
hash(obj)返回obj的哈希值,如果返回表示可以作为dict的key
del 或 dict.pop可以删除一个item,clear清除所有的内容
sorted(dict)可以把dict排序
dict.get()可以查找没存在的key,dict.[]不可以
dict.setdefault() 检查字典中是否含有某键。 如果字典中这个键存在,你可以取到它的值。 如果所找的键在字典中不存在,你可以给这个键赋默认值并返回此值。
{}.fromkeys()创建一个dict,例如:
{}.fromkeys(('love', 'honor'), True) =>{'love': True, 'honor': True}
不允许一个键对应多个值
键值必须是哈希的,用hash()测试
一个对象,如果实现_hash()_方法可以作为键值使用
2.集合(set)
集合是一个数学概念,用set()创建
set.add(),set.update.set.remove,添加更新删除,-= 可以做set减法
set.discard 和 set.remove不同在于如果删除的元素不在集合内,discard不报错,remove 报错
< <= 表示 子集,> >=表示超集
| 表示联合 & 表示交集 - 表示差集 ^ 差分集
3.列表(list)
列表是序列对象,可包含任意的Python数据信息,如字符串、数字、列表、元组等。列表的数据是可变的,我们可通过对象方法对列表中的数据进行增加、修改、删除等操作。可以通过list(seq)函数把一个序列类型转换成一个列表。
append(x) 在列表尾部追加单个对象x。使用多个参数会引起异常。
count(x) 返回对象x在列表中出现的次数。
extend(L) 将列表L中的表项添加到列表中。返回None。
Index(x) 返回列表中匹配对象x的第一个列表项的索引。无匹配元素时产生异常。
insert(i,x) 在索引为i的元素前插入对象x。如list.insert(0,x)在第一项前插入对象。返回None。
pop(x) 删除列表中索引为x的表项,并返回该表项的值。若未指定索引,pop返回列表最后一项。
remove(x) 删除列表中匹配对象x的第一个元素。匹配元素时产生异常。返回None。
reverse() 颠倒列表元素的顺序。
sort() 对列表排序,返回none。bisect模块可用于排序列表项的添加和删除。
4.元组(tuple)
tuple=(1,),这是单个元素的元组表示,需加额外的逗号。
tuple=1,2,3,4,这也可以是一个元组,在不使用圆括号而不会导致混淆时,Python允许不使用圆括号的元组。
和列表一样,可对元组进行索引、分片、连接和重复。也可用len()求元组长度。
元组的索引用tuple[i]的形式,而不是tuple(i)。
和列表类似,使用tuple(seq)可把其它序列类型转换成元组。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21