2018-10-18
阅读量:
1227
分位数回归R代码分享,具体到让你尖叫
###分位数回归####
library(quantreg) # 载入quantreg包
data(engel) # 加载quantreg包自带的数据集
##单变量回归
#分位数回归(tau = 0.5)
fit1 = rq(foodexp ~ income, tau = 0.5, data = engel)
r1 = resid(fit1) # 得到残差序列,并赋值为变量r1
c1 = coef(fit1) # 得到模型的系数,并赋值给变量c1
summary(fit1) # 显示分位数回归的模型和系数
summary(fit1, se = "boot") # 通过设置参数se,可以得到系数的假设检验
#分位数回归(tau = 0.5、0.75)
fit1 = rq(foodexp ~ income, tau = 0.5, data = engel)
fit2 = rq(foodexp ~ income, tau = 0.75, data = engel)
#模型比较
anova(fit1,fit2) #方差分析
col=c("#EEEE00","#EE6363"))
#不同分位点的回归比较
fit = rq(foodexp ~ income, tau = c(0.05,0.25,0.5,0.75,0.95), data = engel)
plot( summary(fit))
##多变量回归
data(barro)
fit1 <- rq(y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2, data = barro,tau=.25)
fit2 <- rq(y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2, data = barro,tau=.50)
fit3 <- rq(y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2, data = barro,tau=.75)
# 替代方式 fit <- rq(y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2, method = "fn", tau = 1:4/5, data = barro)
anova(fit1,fit2,fit3) # 不同分位点模型比较-方差分析
anova(fit1,fit2,fit3,joint=FALSE)
#画图比较分析
plot(engelfooder,engelincome,pch=20, col = "#2E8B57",
main = "家庭收入与食品支出的分位数回归",xlab="食品支出",ylab="家庭收入")
lines(fitted(fit1), engel$income,lwd=2, col = "#EEEE00")
lines(fitted(fit2), engel$income,lwd=2, col = "#EE6363")
legend("topright", c("tau=.5","tau=.75"), lty=c(1,1),
col=c("#EEEE00","#EE6363"))
#不同分位点的回归比较
fit = rq(foodexp ~ income, tau = c(0.05,0.25,0.5,0.75,0.95), data = engel)
plot( summary(fit))
##多变量回归
data(barro)
fit1 <- rq(y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2, data = barro,tau=.25)
fit2 <- rq(y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2, data = barro,tau=.50)
fit3 <- rq(y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2, data = barro,tau=.75)
# 替代方式 fit <- rq(y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2, method = "fn", tau = 1:4/5, data = barro)
anova(fit1,fit2,fit3) # 不同分位点模型比较-方差分析
anova(fit1,fit2,fit3,joint=FALSE)
#不同分位点拟合曲线的比较
plot(barro$y.net,pch=20, col = "#2E8B57",
main = "不同分位点拟合曲线的比较")
lines(fitted(fit1),lwd=2, col = "#FF00FF")
lines(fitted(fit2),lwd=2, col = "#EEEE00")
lines(fitted(fit3),lwd=2, col = "#EE6363")
legend("topright", c("tau=.25","tau=.50","tau=.75"), lty=c(1,1),
col=c( "#FF00FF","#EEEE00","#EE6363"))
0.0000
0
1
关注作者
收藏
评论(0)
发表评论
暂无数据
推荐帖子
0条评论
0条评论
1条评论