热线电话:13121318867

登录
2018-10-19 阅读量: 927
如何理解协方差

协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差,代表了两个变量之间的是否同时偏离均值,协方差表示的是两个变量总体误差的期望。

而方差是协方差的一种特殊情况,即当两个变量是相同的情况。

如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。

协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。

当 cov(X, Y)>0时,表明 X与Y 正相关;

当 cov(X, Y)<0时,表明X与Y负相关;

当 cov(X, Y)=0时,表明X与Y不相关。

0.0000
1
关注作者
收藏
评论(0)

发表评论

暂无数据
推荐帖子