2018-10-22
阅读量:
941
聚类算法基础知识有哪些?
1. 层次聚类 vs 非层次聚类
– 不同类之间有无包含关系
2. 硬聚类 vs 软聚类
– 硬聚类:每个对象只属于一个类
– 软聚类:每个对象以某个概率属于每个类
3. 用向量表示对象
– 每个对象用一个向量表示,可以视为高维空间的一个点
– 所有对象形成数据空间(矩阵)
– 相似度计算:Cosine、点积、质心距离
4. 用矩阵列出对象之间的距离、相似度
5. 用字典保存上述矩阵(节省空间)
D={(1,1):0,(1,2):2,(1,3):6...(5,5):0}
6. 评价方法
– 内部评价法(Internal Evalution):
• 没有外部标准,非监督式
• 同类是否相似,跨类是否相异
DB值越小聚类效果越好,反之,越不好
– 外部评价法(External Evalution):
• 准确度(accuracy): (C11+C22) / (C11 + C12 + C21 + C22)
• 精度(Precision): C11 / (C11 + C21 )
• 召回(Recall): C11 / (C11 + C12 )
• Fβ值(F-measure):
β表示对精度P的重视程度,越大越重视,默认设置为1,即变成了F1值,F1较高时则能说明聚类效果较好。
0.0000
0
2
关注作者
收藏
评论(0)
发表评论
暂无数据
推荐帖子
0条评论
0条评论
1条评论