R软件程序脚本:
rq.fit.panel<-function(X,y,s,w=c(.1,.25,.5,.25,.1),taus=c(0.1,0.25,0.5,0.75,0.9),lambda = 1){
# prototype function for panel data fitting of QR models
# the matrix X is assumed to contain an intercept
# the vector s is a strata indicator assumed (so far) to be a one-way layout
# NB:
# 1. The value of the shrinkage parameter lambda is an open research problem in
# the simplest homogneous settings it should be the ratio of the scale parameters
require(SparseM)
require(quantreg)
K <- length(w)
if(K != length(taus))
stop("length of w and taus must match")
X <- as.matrix(X)
p <- ncol(X)
n <- length(levels(as.factor(s)))
N <- length(y)
if(N != length(s) || N != nrow(X))
stop("dimensions of y,X,s must match")
Z <- as.matrix.csr(model.matrix(~as.factor(s)-1))
Fidelity <- cbind(as(w,"matrix.diag.csr") %x% X,w %x% Z)
Penalty <- cbind(as.matrix.csr(0,n,K*p),lambda*as(n,"matrix.diag.csr"))
D <- rbind(Fidelity,Penalty)
y <- c(w %x% y,rep(0,n))
a <- c((w*(1-taus)) %x% (t(X)%*%rep(1,N)),
sum(w*(1-taus)) * (t(Z) %*% rep(1,N)) + lambda * rep(1/2,n))
rq.fit.sfn(D,y,rhs=a)
}
of the fixed effects and the idiocyncratic errors
# 2. On return the coefficient vector has m*p + n elements where m is the number
# quantiles being estimated, p is the number of colums of X, and n is the
# number of distinct values of s. The first m*p coefficients are the
# slope estimates, and the last n are the "fixed effects"
# 3. Like all shrinkage (regularization) estimators, asymptotic inference is somewhat
# problematic... so the bootstrap is the natural first resort.
R统计软件操作程序:
library(“quantreg”)
source(“rq.fit.panel”)
m <- 12
n <- 8
s <- rep(1:n,rep(m,n))
data<-read.csv("zhongbu.csv")
x<-data$LNVEDU
X<-cbind(1,x)
y<-data$LNVGDP
fit<- rq.fit.panel(X,y,s)
fit
n1=length(y)
b=2000 #Number of bootstrap samples
ncoef=5*ncol(X)+n
boot_bhat=matrix(NA,b, ncoef)
block_length =8 #代表块状长度
num_blocks = n1/block_length #n/block_length
Indices = seq(1:n1) # All of the indices from 1 to n
Indices = matrix(Indices,block_length,num_blocks)
for (i in 1:b){ #Number of bootstrap samples
randblock =sample(seq(1:num_blocks),num_blocks,replace = TRUE) # Choose which blocks to use
Ind_sim = Indices[,randblock] #Find which data are in each block
Ind_sim = c(Ind_sim)
p <- length(bhat)
rdf <- n1 - p
vnames<- dimnames(x)[[2]]
coef <- array(bhat, c(p, 4))
dimnames(coef) <- list(vnames, c("Value", "Std. Error", "t value","Pr(>|t|)"))
coef[, 2] <- serr
coef[, 3] <- coef[, 1]/coef[, 2]
coef[, 4] <- if (rdf > 0) 2 * (1 - pt(abs(coef[, 3]), rdf))
coef
暂无数据