2018-10-27
阅读量:
1265
向量误差修正模型案例分析
> ############################
> #1.生成数据
> set.seed(12345)
> u1<-rnorm(500)
> u2<-arima.sim(list(ar=0.6),n=500) #生成模拟的一阶自回归模型
> u3<-arima.sim(list(ar=.4),n=500)
> y1<-cumsum(u1) #生成随机游走序列 y1
> y2<-0.4*y1+u2
> y3<-0.8*y1+u3
> #调用urca包中的ca.jo()对时间序列y1 y2 y3进行Jonhansen协整检验
> #2.Jonhansen协整检验
> library(urca)
> data<-data.frame(y1=y1,y2=y2,y3=y3) #将变量组织为数据框
## ca.jo(x, type = c("eigen", "trace"), ecdet = c("none", "const", "trend"), K = 2,spec=c("longrun", "transitory"), season = NULL, dumvar = NULL) 注意这里只是用默认设置。 ##
> model.vecm<-ca.jo(data)
> head(model.vecm@x) #ca.jo使用S4方法,故用@提取变量
y1 y2 y3
[1,] 0.5855288 -0.31135095 -1.0377854
[2,] 1.2949948 0.59430322 -0.5116634
[3,] 1.1856915 1.28751444 -0.1316301
[4,] 0.7321943 1.64792194 0.7132483
[5,] 1.3380818 0.09367809 1.3288343
[6,] -0.4798742 -0.61468043 0.1199645
> #使用slotNames()显示模型包含的全部对象类型
> slotNames(model.vecm)
[1] "x" "Z0" "Z1" "ZK" "type" "model" "ecdet"
[8] "lag" "P" "season" "dumvar" "cval" "teststat" "lambda"
[15] "Vorg" "V" "W" "PI" "DELTA" "GAMMA" "R0"
[22] "RK" "bp" "spec" "call" "test.name"
> summary(model.vecm)
######################
# Johansen-Procedure #
######################
Test type: maximal eigenvalue statistic (lambda max) , wi
th linear trend
Eigenvalues (lambda):
[1] 0.222707791 0.167079305 0.007684667
Values of teststatistic and critical values of test:
test 10pct 5pct 1pct
r <= 2 | 3.84 6.50 8.18 11.65
r <= 1 | 91.04 12.91 14.90 19.19
r = 0 | 125.47 18.90 21.07 25.75
Eigenvectors, normalised to first column:
(These are the cointegration relations)
y1.l2 y2.l2 y3.l2
y1.l2 1.0000000 1.000000 1.0000000
y2.l2 -0.2355148 -5.064504 -0.1799248
y3.l2 -1.1315152 1.143660 -0.1993207
Weights W:
(This is the loading matrix)
y1.l2 y2.l2 y3.l2
y1.d 0.05151358 0.002693258 -0.008416933
y2.d 0.11164178 0.075923301 -0.002918384
y3.d 0.51768302 -0.015197036 -0.006078055
从统计检验值可以看出,在r为2时接收原假设,即认为协整向量的秩为2
> #使用cajorls()估计VECM模型的系数矩阵
#####################################################
> cajorls(model.vecm,r=2) #估计VECM模型 ,cajorls(z, r = 1, r # eg.number = NULL),其中r为协整向量的秩。
> #VECM模型转化为水平VAR模型
> ###########################
> library(vars)
> model.var<-vec2var(model.vecm,r=2) #获取与VECM模型等价########的VAR模型估计
> model.var
Coefficient matrix of lagged endogenous variables:
A1:
y1.l1 y2.l1 y3.l1
y1 1.0191535 0.01734796 -0.03389437
y2 0.2292213 0.61819733 -0.05119624
y3 0.4714272 0.04342308 0.41578278
A2:
y1.l2 y2.l2 y3.l2
y1 0.03505334 -0.04312019 -0.02131386
y2 -0.04165626 -0.02900446 0.01170232
y3 0.03105876 -0.08837964 -0.01892923
Coefficient matrix of deterministic regressor(s).
constant
y1 0.08574980
y2 0.28405415
y3 -0.02490038
0.0000
0
1
关注作者
收藏
评论(0)
发表评论
暂无数据
推荐帖子
0条评论
0条评论
1条评论