2018-12-13
阅读量:
1540
什么是多项式回归?
很多人不理解多项式回归是什么,其实多项式回归也是线性回归的一种形式,多项式回归拟合x的值与y的对应条件均值之间的非线性关系,表示为E(y | x),其中自变量x和因变量y之间的关系被建模为n次多项式。
何为多项式回归:
- 研究人员假设的一些关系是曲线的。显然,这种类型的案例将包括多项式项。
- 检查残差。如果我们尝试将线性模型拟合到曲线数据,则预测变量(X轴)上的残差(Y轴)的散点图将在中间具有许多正残差的斑块。因此,在这种情况下,这是不合适的。
- 通常的多元线性回归分析的假设是所有自变量都是独立的。在多项式回归模型中,不满足该假设。
多项式回归的使用:
这些基本上用于定义或描述非线性现象,例如:
- 组织生长速度。
- 疾病流行病的进展
- 湖泊沉积物中碳同位素的分布
回归分析的基本目标是根据自变量x的值来模拟因变量y的期望值。在简单回归中,我们使用以下等式 -
y = a + bx + e
这里y是因变量,a是y截距,b是斜率,e是误差率。
在许多情况下,这种线性模型将无法解决。例如,如果我们在这种情况下根据合成温度分析化学合成的产生,我们使用二次模型
y = a + b1x + b2 ^ 2 + e
这里y是x的因变量,a是y截距,e是误差率。
通常,我们可以将其建模为第n个值。
y = a + b1x + b2x ^ 2 + .... + bnx ^ n
由于回归函数在未知变量方面是线性的,因此这些模型从估计的角度来看是线性的。
因此,通过最小二乘技术,让我们计算y的响应值。
0.0000
0
4
关注作者
收藏
评论(0)
发表评论
暂无数据
推荐帖子
0条评论
0条评论
1条评论