> fit <- glm(sumY ~ Base + Age + Trt, data=breslow.dat, family=poisson())
> summary(fit)
Call:
glm(formula = sumY ~ Base + Age + Trt, family = poisson(), data =
breslow.dat)
Deviance Residuals:
Min 1Q Median 3Q Max
-6.057 -2.043 -0.940 0.793 11.006
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.948826 0.135619 14.37 < 2e-16 ***
Base 0.022652 0.000509 44.48 < 2e-16 ***
Age 0.022740 0.004024 5.65 1.6e-08 ***
Trtprogabide -0.152701 0.047805 -3.19 0.0014 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 2122.73 on 58 degrees of freedom
Residual deviance: 559.44 on 55 degrees of freedom
AIC: 850.7
Number of Fisher Scoring iterations: 5
输出结果列出了偏差、回归参数、标准误和参数为0的检验。注意,此处预测变量在p<0.05
的水平下都非常显著。
暂无数据