热线电话:13121318867

登录
2019-01-26 阅读量: 937
SVM如何可视化展示?

# installing library ElemStatLearn

library(ElemStatLearn)

# Plotting the training data set results

set = training_set

X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)

X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)

grid_set = expand.grid(X1, X2)

colnames(grid_set) = c('Age', 'EstimatedSalary')

y_grid = predict(classifier, newdata = grid_set)

plot(set[, -3],

main = 'SVM (Training set)',

xlab = 'Age', ylab = 'Estimated Salary',

xlim = range(X1), ylim = range(X2))

contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)

points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'coral1', 'aquamarine'))

points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))

0.0000
1
关注作者
收藏
评论(0)

发表评论

暂无数据
推荐帖子