2019-01-31
阅读量:
1154
利用glmnet函数实现岭回归与Lasso
#Hitters(棒球)数据集介绍
library(ISLR)
names(Hitters)
#[1] "AtBat" "Hits" "HmRun"
# [4] "Runs" "RBI" "Walks"
#[7] "Years" "CAtBat" "CHits"
#[10] "CHmRun" "CRuns" "CRBI"
#[13] "CWalks" "League" "Division"
#[16] "PutOuts" "Assists" "Errors"
#[19] "Salary" "NewLeague"
sum(is.na(Hitters$Salary))
Hitters=na.omit(Hitters) #先剔除缺失值
####岭回归和Lasso####
x=model.matrix(Salary~.,Hitters)[,-1] #删除了截距项
y=Hitters$Salary
library(glmnet)
grid=10^seq(10,-2,length=100)#10^-2至10^10
ridge.mod=glmnet(x,y,alpha=0,lambda=grid)
grid[50] #11497.57
grid[60] #705.4802
dim(coef(ridge.mod))
ridge.mod$lambda[50] #lamuda=11498时的系数向量
ridge.mod$lambda[60] #lamuda=705时的系数向量
#说明,比较上述两个系数向量,可知lamuda值小,岭回归的系数更大
#预测lamuda值为50的岭回归系数
predict(ridge.mod,s=50,type="coefficients")[1:20,] #将系数矩阵转化为向量
#划分训练集和测试集
set.seed(1)
train=sample(1:nrow(x),nrow(x)/2)
test=(-train)
y.test=y[test]
ridge.mod=glmnet(x[train,],y[train],alpha= 0,lambda = grid,thresh = 1e-12)
ridge.pred=predict(ridge.mod,s=4,newx=x[test,])
mean((ridge.pred-y.test)^2) # lamuda=4时,MSE=101036.8
mean((mean(y[train])-y.test)^2) #只含截距项模型的测试误差193253.1
ridge.pred=predict(ridge.mod,s=1e10,newx= x[test,])
mean((ridge.pred-y.test)^2) # lamuda=10^10时,MSE=193253.1
#当lamuda很大时,模型的测试误差与只含截距项模型的测试误差相当
set.seed(1)
cv.out=cv.glmnet(x[train,],y[train],alpha=0)
par(mfrow=c(1,1))
plot(cv.out)
bestlam=cv.out$lambda.min #交叉验证确定最优的lamuda=211.7416
ridge.pred=predict(ridge.mod,s=bestlam,newx= x[test,])
mean((ridge.pred-y.test)^2) # lamuda=212时,96015.51
out=glmnet(x,y,alpha=0)
predict(out,type="coefficients",s=bestlam)[1:20,]
#岭回归无法将系数变量压缩至0
###
#最小二乘即lamda=0的岭回归
ridge.pred=predict(ridge.mod,s=0,newx= x[test,],exact = TRUE)
mean((ridge.pred-y.test)^2) #114783
lm.fit=lm(y~x,subset= train)
lasso.mod=glmnet(x[train,],y[train],alpha=1,lambda=grid)
plot(lasso.mod)
set.seed(1)
cv.out=cv.glmnet(x[train,],y[train],alpha=1)
plot(cv.out)
bestlam=cv.out$lambda.min #交叉验证确定最优的lamuda=35.32063
lasso.pred=predict(lasso.mod,s=bestlam,newx= x[test,])
mean((lasso.pred-y.test)^2) # lamuda=35时, MSE=100743.4
out=glmnet(x,y,alpha=1)
predict(out,type="coefficients",s=bestlam)[1:20,]
#Lasso的系数估计结果是稀疏的
0.0000
0
1
关注作者
收藏
评论(0)
发表评论
暂无数据
推荐帖子
0条评论
0条评论
1条评论