2020-02-24
阅读量:
848
怎样理解欠拟合和过拟合?
过拟合:指为了得到一致性假设而使假设变得过度严格。在模型参数拟合过程中,由于训练数据包含抽样误差,复杂的模型将抽样误差也考虑在内,将抽样误差也进行了很好的拟合。欠拟合反之。
“欠拟合”常常在模型学习能力较弱,而数据复杂度较高的情况出现,此时模型由于学习能力不足,无法学习到数据集中的“一般规律”,因而导致泛化能力弱。
与之相反,“过拟合”常常在模型学习能力过强的情况中出现,此时的模型学习能力太强,以至于将训练集单个样本自身的特点都能捕捉到,并将其认为是“一般规律”,同样这种情况也会导致模型泛化能力下降。
0.0000
0
3
关注作者
收藏
评论(0)
发表评论
暂无数据
推荐帖子
0条评论
0条评论