2021-01-22
阅读量:
2791
python聚类后如何找到分类后的数据
获取聚类结果中每一类的数据,该数据类型是DataFrame
思路:获取clf_KMeans的标签,我这里是聚三类,标签就是0,1,2
将Label转成Series类型,再筛选出指定标签的res0,我筛选了1
最后在DataFrame里获取Label为1的数据
import pandas as pd
from sklearn.cluster import KMeans
# 建立模型。n_clusters参数用来设置分类个数,即K值,这里表示将样本分为两类。
clf_KMeans = KMeans(n_clusters=3, max_iter=10)
# 模型训练。得到预测值。
print "clf_KMeans聚类中心\n", (clf_KMeans.cluster_centers_)
quantity = pd.Series(clf_KMeans.labels_).value_counts()
print "cluster2聚类数量\n", (quantity)
#获取聚类之后每个聚类中心的数据
res0Series = pd.Series(clf_KMeans.labels_)
res0 = res0Series[res0Series.values == 1]
print"类别为1的数据\n",(df.iloc[res0.index])
另外一种方法,更简洁
res = dataframe[(clf_KMeans.labels_ == 1)]






评论(0)


暂无数据
推荐帖子
0条评论
0条评论
0条评论