第七、远近度思维
现在与许多处在管理层的朋友交流后,发现他们往往手握众多数据和报表,注意力却是非常的跳跃和分散。这当然不是好现象,但如何避免呢?一是上文说的通过相关思维,找到最核心的问题和指标;二就是这部分要说的,建立远进度的思维方式。
确定好核心问题后,分析其他业务问题与该核心问题的远近程度,由近及远,把自己的精力有计划地分配上去。比如,近期你地核心任务就是提高客服人员的服务质量,那么客服人员的话术、客户评价通道、客服系统的相应速度等就是靠的最近的子问题,需要重点关注,而客户的问询习惯、客户的购买周期等就是相对远的问题,暂时先放一放。当然,本人经历有限,例子举得不恰当的地方还望读者们海涵。
第八、逻辑树思维
如图的树状逻辑相信大家已经见过许多回了。一般说明逻辑树的分叉时,都会提到“分解”和“汇总”的概念。我这里把它变一变,使其更贴近数据分析,称为“下钻”和“上卷”。当然,这两个词不是我发明的,早已有之。
所谓下钻,就是在分析指标的变化时,按一定的维度不断的分解。比如,按地区维度,从大区到省份,从省份到城市,从省市到区。所谓上卷就是反过来。随着维度的下钻和上卷,数据会不断细分和汇总,在这个过程中,我们往往能找到问题的根源。
下钻和上卷并不是局限于一个维度的,往往是多维组合的节点,进行分叉。逻辑树引申到算法领域就是决策树。有个关键便是何时做出决策(判断)。当进行分叉时,我们往往会选择差别最大的一个维度进行拆分,若差别不够大,则这个枝桠就不在细分。能够产生显著差别的节点会被保留,并继续细分,直到分不出差别为止。经过这个过程,我们就能找出影响指标变化的因素。
举个简单的例子:我们发现全国客户数量下降了,我们从地区和客户年龄层级两个维度先进行观察,发现各个年龄段的客户都下降,而地区间有的下降有的升高,那我们就按地区来拆分第一个逻辑树节点,拆分到大区后,发现各省间的差别是显著的,那就继续拆分到城市,最终发现是浙江省杭州市大量客户且涵盖各个年龄段,被竞争对手的一波推广活动转化走了。就此通过三个层级的逻辑树找到了原因。
第九、时间序列思维
很多问题,我们找不到横向对比的方法和对象,那么,和历史上的状况比,就将变得非常重要。其实很多时候,我更愿意用时间维度的对比来分析问题,毕竟发展地看问题,也是“红色方法论”中的重要一环。这种方式容易排除掉一些外在的干扰,尤其适合创新型的分析对象,比如一个新行业的公司,或者一款全新的产品。
时间序列的思维有三个关键点:一是距今越近的时间点,越要重视(图中的深浅度,越近期发生的事,越有可能再次发生);二是要做同比(图中的尖头指示,指标往往存在某些周期性,需要在周期中的同一阶段进行对比,才有意义);三是异常值出现时,需要重视(比如出现了历史最低值或历史最高值,建议在时间序列作图时,添加平均值线和平均值加减一倍或两倍标准差线,便于观察异常值)。
时间序列思维有一个子概念不得不提一下,就是“生命周期”的概念。用户、产品、人事等无不有生命周期存在。本人最近也正在将关注的重心移向这块,直觉上,生命周期衡量清楚,就能很方便地确定一些“阀值”问题,使产品和运营的节奏更明确。
第十、队列分析思维
随着数据运算能力的提高,队列分析的方式逐渐展露头脚。英文名称为cohort analysis,说实话我不知道怎么表述这个概念,我的理解就是按一定的规则,在时间颗粒度上将观察对象切片,组成一个观察样本,然后观察这个样本的某些指标随着时间的演进而产生的变化。目前使用得最多的场景就是留存分析。
举个经常用的例子:假设5.17我们举办了一次促销活动,那么将这一天来的新用户作为一个观察样本,观察他们在5.18、5.19...之后每天的活跃情况。
队列分析中,指标其实就是时间序列,不同的是衡量样本。队列分析中的衡量样本是在时间颗粒上变化的,而时间序列的样本则相对固定。
暂无数据