cda

数字化人才认证

首页 > 行业图谱 >

1/1
数据分析中常用的文本挖掘方法有哪些?
2024-05-13
文本挖掘是数据分析领域中的重要技术之一,它旨在从大量的文本数据中提取有用的信息和知识。常用的文本挖掘方法包括以下几种: 词袋模型(Bag of Words):词袋模型是最基础的文本表示方法之一。它将每个文档看作 ...
如何提高数据分析师的人工智能技能?
2023-12-09
在当今数字化时代,数据分析师扮演着至关重要的角色。随着人工智能技术的迅猛发展,数据分析师需要不断更新和提升自己的技能,以应对日益复杂的业务需求。本文将介绍一些提高数据分析师人工智能技能的方法和策略。 ...
如何利用自然语言处理分析客户反馈?
2023-11-27
在当今信息爆炸的时代,企业面临着大量来自客户的反馈和评论。这些反馈包含了丰富的信息,可以帮助企业了解客户需求、改善产品和服务,以及优化营销策略。然而,人工分析如此庞大的数据量是一项繁琐且耗时的任务。 ...
数据分析策略中常用的方法有哪些?
2023-09-08
数据分析策略中常用的方法有很多,以下是一些重要的方法: 描述性统计:描述性统计是对数据进行总结和描述的方法,常用的统计指标包括均值、中位数、标准差、最大值、最小值等。通过描述性统计,我们可以了解数据 ...
一个神经网络可以有两个损失函数吗?
2023-04-03
神经网络是一种模拟人类神经系统的计算模型,可以自动学习输入和输出之间的关系。在训练神经网络时,通常需要定义一个损失函数来评估模型的性能,并通过调整模型参数来最小化损失函数。但是,有时候我们可能需要考虑 ...
CRF和LSTM 模型在序列标注上的优劣?
2023-03-31
序列标注是一种重要的自然语言处理任务,通常用于实体识别、命名实体识别、分词、词性标注等。在序列标注中,CRF和LSTM是两种常用的模型,本文将比较它们在序列标注上的优劣。 一、CRF 条件随机场(CRF)是一种无向 ...
图神经网络如何在自然语言处理中应用?
2023-03-29
图神经网络是一种新兴的深度学习模型,其可以有效地捕捉非线性关系和复杂数据结构。近年来,图神经网络在自然语言处理领域中得到了广泛应用,特别是在文本分类、命名实体识别、情感分析等任务中取得了很好的效果。 ...
强化学习(RL)在NLP的应用前景如何?
2023-03-27
强化学习 (Reinforcement Learning, RL) 是机器学习中的一种重要分支,它通过让计算机与环境进行交互来学习策略,从而实现最优化决策。在自然语言处理 (Natural Language Processing, NLP) 领域,强化学习也有着广泛 ...
1/1

OK