cda

数字化人才认证

首页 > 行业图谱 >

1/1
如何构建高效的机器学习模型?
2023-07-04
构建高效的机器学习模型需要考虑多个方面,包括数据准备、特征工程、模型选择与调优等环节。下面将介绍一些关键步骤来实现高效的机器学习模型。 第一步是数据准备。对于机器学习任务而言,高质量的数据是至关重要的 ...
如何对数据进行特征工程?
2023-06-15
特征工程是机器学习中至关重要的一步,它是将原始数据转换为机器学习算法可以使用的特征向量的过程。在本文中,我们将探讨如何对数据进行特征工程。 数据清洗 在进行特征工程之前,首先需要对原始数据进行清洗。这 ...

数据分析之数据挖掘入门指南

数据分析之数据挖掘入门指南
2022-10-25
数据分析 探索性数据分析(Exploratory Data Analysis,EDA)是指对已有数据在尽量少的先验假设下通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。 常用的第三方库 ...

数据分析师之数据挖掘入门

数据分析师之数据挖掘入门
2022-10-19
数据分析 探索性数据分析(Exploratory Data Analysis,EDA)是指对已有数据在尽量少的先验假设下通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。 常用的第三方库 ...

机器学习模型设计五要素

机器学习模型设计五要素
2018-08-26
机器学习模型设计五要素 数据可能没什么用,但是数据中包含的信息有用,能够减少不确定性,数据中信息量决定了算法能达到的上限。 数据环节是整个模型搭建过程中工作量最大的地方,从埋点,日志上报,清洗, ...
1/1

OK