P2P征信不妨走“大数据”思路
可以将我国的金融体系征信、行业信用征信和商业征信全部纳入大数据信用体系,在不涉及隐私涉密的前提下尽可能地将信用资源共享。允许P2P公司接入大数据信用数据库,实现各方面信用平台的有效对接。
据媒体报道,深圳融金所8名高管近日因涉嫌非法吸收公众存款被警方刑事拘留。而在此前国湘资本CEO被曝出涉嫌自融被经侦带走,目前各项业务已暂停。分析认为,P2P整治风暴或已经悄然来临。
目前来看,P2P平台主要存在两大问题,一是预期投资回报率过高,而实体经济却难以维持业绩并导致运营平台的资金链断裂;二是针对雨后春笋般四处开花的P2P,既没有门槛,政府也缺乏统一的征信平台。
目前来看,P2P平台征信问题则显得尤为迫切。现在的P2P就像传统借贷行业银行,也可以分为直接融资和间接融资。
在直接融资方面,P2P平台仅充当信息披露角色,帮助资金供求双方进行更高效的匹配,而不涉及资金运作,也不参与担保;但是在间接融资方面,P2P平台充当了以往商业银行金融中介的职能,负责从一方接入并向资金需求方提供实质资金,在这种情况下P2P就担当了资金转让与风险中介的角色。对于直接融资性质的P2P平台,更需要的是借款一方的征信数据;而对于间接融资P2P,由于其担当的是小额放贷机构的角色,甚至与非法集资只有一线之隔。而资金提供方此时的出资就好比是给一个放贷机构提供贷款,因此就不得不考虑该机构的信用程度。此时不仅仅需要资金需求方即实体企业的征信数据,P2P公司的信用数据也是必需的。
然而不论是何种性质的P2P平台,我国都没有建立起能够胜任角色的征信平台。一方面,我国的P2P平台尚未接入金融信用信息基础数据库,P2P对贷款人的风险审核评估只能凭借主观评价;另一方面,即便在各个P2P公司之间也没有实现信息共享,对于在多个平台借款存在过度负债和恶意欺诈性质的借款人难以有效防范。
对于P2P平台的征信监管难题,不妨可以考虑用“大数据”化解。比如可以将我国的金融体系征信、行业信用征信和商业征信全部纳入大数据信用体系,在不涉及隐私涉密的前提下尽可能地将信用资源共享。允许P2P公司接入大数据信用数据库,实现各方面信用平台的有效对接;此外,还可以鼓励设立专门针对P2P的信用评级机构,在大数据资源的基础上,坚持公平、公正的原则,不以权谋私,建立统一口径的信用评级标准;另外,也有必要建立违约披露机制,针对违约企业和个人以及恶意欺骗的P2P平台执行严格惩处,并将其纳入失信者个人的信用记录。
P2P在我国尚处于起步阶段,对于任何一种市场形势来说,诞生之初势必会出现种种问题。我们不应对其一概抹杀,而对优点视而不见。在当今强调金融扶持小微企业的主旋律下,P2P借贷平台具有其优势。接下来更多的是要在征信监管和行业门槛上下工夫。同时可以考虑适时对其引入保险机制,切实保护投资人的利益,降低市场风险。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28