看互联网大数据时代的喜与忧
近来,“大数据”这个词非常的火热。随着科技与互联网的进步,数据似乎已经成为改变一家企业所必不可少的利器。尤其是随着大数据时代的到来,一些曾经非常棘手的问题都能够迎刃而解。比如Google能够先于美国的公共卫生机构发现流感的发生以及传播,甚至能够精确到某个地域,准确率曾高达97%,而这在小数据时代是完全无法想象的。
大数据时代无论是为企业还是为政府亦或是个人都带来了极大的便利。企业能够通过数据分析准确判断出客户的兴趣爱好、购买意向并以此来向客户推荐相关性最高的产品。而这其中做得最为成功的尤属亚马逊。亚马逊在最开始的时候采用的是图书评论形式来向用户推荐图书,但是当拥有大量的用户数据之后转而使用数据分析的形式来向用户推荐图书。成交率比之前有大大的提高,而且再也不需要评论编辑这样也可节约一定的人力成本。
在大数据时代,人们无需在苦苦寻找事物的因果关系。仅通过分析数据来得出相关关系即可,也就是说人们只要知其然而无需知其所以然。比如说,埃齐奥尼开发的Farecast系统能够从现有的航空公司大量的机票销售数据当中分析预测出什么时候购买机票最为便宜。但是却并不知道是什么让机票变得便宜了,而且这也并不是重点,人们只需要知道结果即可。
此外,大数据时代另一个进步在于“样本=全体”。与小数据时代的抽样统计相比,显然这样的方式更具有精确性。因为,大数据时代是将所有的数据作为样本区分析的,能够更加准确并且及时的发现人们曾经所发现不了的细节,而这些细节很可能会关乎成败。而且对于这些数据人们不再盲目追求精确,而是要包含一定的混杂数据。因为这也是属于大数据当中的一部分,只有数据越全面结果才能够越准确。
最为关键的是大数据在商业上面的价值,要比以往任何时候都显得尤为重要。数据的收集、分析也比以往要变得更为廉价、方便。企业只要通过大量的客户数据分析就能够准确制定下一步的经营策略,以及产品改进。比如,一家汽车企业能够通过对客户的坐姿数据的分析来制作汽车的防盗系统、银行能够根据你的社交数据来分析你是否能够偿还贷款。虽然这些看起来并无多少关联,但是大数据让这一切变为可能。
尽管大数据时代的到来有着诸多的好处,但是任何事物总有两面性。大数据时代在给我们带来惊喜的同时也给我们带来许多困扰。比如,我们个人的隐私问题,在大数据时代我们身边每时每刻都会有“第三只眼”在时刻盯着我们的一举一动。你的任何行为都有可能成为某个商家或是机构的分析数据并且随时有可能将之公诸于众。在大数据时代个人隐私或将成为一个“伪命题”。一旦被人非法利用,后果将不堪设想!
而且在大数据时代,人们的思维或许一时还很难转变。所以,如何正确分析并利用大数据就成为一个亟待解决的问题。尽管大数据能够帮人预测某种趋势,诸如根据某人过去的行为预测其可能犯罪之类的,但是我们并不能够依据这些预测就将其定罪。毕竟,事情还没有发生,尽管可以预防但是却不能够惩罚。
最后一点,在大数据时代人们会过于依赖对数据的分析。一旦数据出错,那么人们根据数据所做出的决策与判断都将是错误的。如果在企业运作当中,一次错误的数据分析很容易将企业毁于一旦。而且,数据分析让一切都变得标准化。但是,这并不是完全正确的。诸如一些产品设计,需要设计人员的灵感、需要一些艺术上的创造而不仅仅是一些冰冷的数据。Google在数据的运用上可谓是炉火纯青,但是Google也难免会犯一些常识性的错误。因为Google在招募人才的时候选择了统一的成绩数据标准作为招聘的主要依据。但是,这些并不足以表明一个人究竟是否是人才,但是Google却固执的坚守着这一错误行为。这就是对于大数据的过度依赖,所造成的。
我说过,一件事情总有两面性。大数据在帮人类解决问题的同时也在为人类创造新的问题,对于大数据的使用也同样如此。尽管大数据有着足够强大的力量,但是我们最需要改善的不是数据库的大小、精准与否,而是我们的思维,因为思维才是驾驭科技最根本的力量!
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28