互联网征信等大数据应用很大一部分还是讲故事
如果说马云构建的金融帝国是一个大家族,那么每一条业务线都可能成为“野孩子”。
最近“摊上事”的则是刚刚起步几个月的征信业务。近日有媒体报道称,央行近日叫停了蚂蚁金服旗下芝麻信用多个营销活动,包括与首都机场快速安检通道合作。不过蚂蚁金服和芝麻信用等方面很快辟谣,称并未收到央行通知,该公司还表示,所谓转账等方式提高芝麻信用分更是无稽。
否认被叫停
今年1月份,央行首次批准8家企业准备个人征信工作。
包括阿里、腾讯、拉卡拉等互联网公司,成为首批试点幸运儿。值得注意的是,相比其他几家,阿里在个人征信服务方面更是十分活跃,除了可视化的“芝麻信用分”产品外,还与神州租车、一嗨租车、阿里旅行、网易花田等一系列第三方尝试商业化合作,涉及租车、交友、网购、住宿等多个领域。尤其是与支付宝合作,更使得“芝麻信用”成为类余额宝网民话题。
不过最近芝麻信用在机场、校园等场景一系列营销活动,也遭遇了部分媒体质疑。财新援引接近央行消息人士称,“芝麻信用机场快速安检通道被叫停”,此外,还有业内人士质疑,用户可以通过互相划款提高芝麻信用分。
“我们没有收到任何监管叫停通知,”9月24日上午芝麻信用发布声明辟谣,称芝麻信用快速安检通道将面向信用分750以上用户继续开放。声明还提道,芝麻信用公测期间,“一直与监管保持良好沟通。”
记者注意到,芝麻信用当天上午还推送了这一服务的消息通知。消息显示,芝麻分在750以上用户可以走首都机场CIP安检通道(国内快速安检通道),活动期限为9月15日至10月14日,具体时间为每天6:30至20:30。
据了解,自1月份开始“准备工作”之后,蚂蚁金服先是向部分用户开放测试,随后在6月份开放全国范围公测。公测期间,芝麻信用启动了无人超市、大学生信用节、芝麻信用快速安检通道等活动,不过该公司并未透露目前参与芝麻信用用户规模。
按照芝麻信用分可视化的结构,其构建目前呈现为“行为偏好”、“身份特质”、“人脉关系”、“履约能力”和“信用历史”等,对应了用户教育职业、消费行为、资产状况、社交关系等方面信息,但对于媒体报道乃至部分坊间观点认为,可以通过网购、互相转账等方式,来提高信用分的说法,芝麻信用也进行了澄清。
“互相划款提高信用分是无稽之谈”,芝麻信用在回应声明中称,这种手法会被芝麻信用的大数据模型识别,不但无效还会给用户信用历史带来负面影响。按照该公司的解释,其征信系统参考数据关系多达数亿条,结合的底层指标超过上万个,数据来源包括电商数据、互联网金融数据、公安网、最高法、教育部、工商等公共机构数据,除此之外还有第三方合作伙伴以及用户自主递交生活、支付、购物、投资、公益等多个场景。
蚂蚁金服内部人士告诉记者,某一维度数据丰富并不意味芝麻信用分高。该人士还表示,芝麻信用也不是所谓“会员”概念,因为平常的积分是只会增加不会减少,而芝麻信用因为多种数据,可能会有所下降。
但对于这个构建在“大数据”概念下的信用维度架构和规则,芝麻信用方面却一直没有对外透露。“如果我们披露的话,就会有人去刷信用。”前述人士表示。
网络征信试水
“央行对于民企做征信,还是有顾虑的,既然是试点,就应该允许探索不同方法,尤其是企业行为,更应该坚持市场导向,有一些市场行为也无可厚非。”中央财经大学教授黄震表示。
在黄震看来,BAT以及其他一些公司,都积累了很多数据,不管是交易、社交乃至交通旅行等方面数据,有一定数据基础和条件的数据公司,都应该鼓励尝试,“哪怕只是一孔之见。”
他同时指出,国外早就有了用各种数据作为征信依据,包括航空公司、大型零售商与银行机构合作,基于一些评级、评价数据分析,推出相关产品服务。
“央行征信中心难以覆盖到个人征信需求,存在瓶颈问题,”黄震告诉记者,国内多个机构、部门数据实际上都不怎么打通,形成了信息孤岛。互联网和大数据技术发展,带动起个人征信尝试,实际和借款、消费信贷等一样,都是将原有垄断打破。
不过黄震认为,现在互联网征信还谈不上颠覆,更重要是数据价值挖掘、联网、开放。
按照芝麻信用的说法,芝麻信用除了阿里系统数据外,还有很多第三方数据,互联网金融千人会秘书长易欢欢则认为,个人征信不管是外在形式如何,娱乐化或者营销模式怎么样,最重要还是要从内在看数据价值挖掘,能否构建起一个可以信赖、验证模型,这也将是一个长期的过程,既需要数据本身积累,与其他各方打通,同时也需要反复验证以提高准确率,“从目前看,阿里和腾讯都在做积极尝试。”
实际上,包括“芝麻信用”以及其他第三方征信产品,最核心构建理念基本都是互联网与大数据,这也为互联网公司津津乐道。
但迄今为止,成熟的商业产品依然有待验证,与此同时,央行也尚未发布真正的个人征信牌照,所以企业也都是“试牌照”。花果金融CEO认为,所谓“大数据”应用,有很大一部分还是出于互联网讲故事因素,“大数据应用于征信确实有一些成功案例,但大规模应用目前还不存在。此外,目前关于大数据很多时候也是出于互联网公司讲故事的需要。”
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28