大数据的本质是虚拟中介,和实体经济相生相伴
互联网发展的一个重要的特点,就是很多线下的业务被放在了线上,互联网本身具有去载体化的天然特性,正是因为有这样的特性,所以数据沉淀就显得特别重要,若是没有这个数据沉淀的优势,互联网去载体化就不可能实现。
以往传统的线下业务其实也沉淀了大量的数据,只不过这种数据的负载形式是物理的,传统的统计形式更多的依赖人工,所以这些沉淀的数据一直在沉睡而没有被唤醒,因为人工的方式根本没法做到。互联网充当了唤醒这座数据金矿的重要角色,使得人类第一次对数据的效用重视起来,所以大数据的概念风靡当下,不能不说这是互联网带来的意外之喜。
互联网将传统线下业务搬到了线上,于是这种大数据的形式就凸现出来,因为既然互联网具有去中介化的天然特性,那么这种中介化的价值信息就附着在海量的数据中——除了数据,互联网的价值链就显得没那么有价值了,所以从某种程度上说,互联网时代的中介化,就是沉淀的海量数据形式。这和传统的物理中介当然是两个不同的概念,只不过互联网时代,很多传统的物理中介都受到了虚拟中介的冲击。本质上,这只是中介身份的一种转换,而不是物理中介被消灭了。
例如,银行、证券、交易所等金融机构都是物理中介,其业务所积累起来的数据非常可观,当这些数据被海量的搬到线上的时候,我们并不能简单的认为这些金融机构被消灭了,而应该认识到,这些金融机构的身份,是以搬到了线上的海量数据为新的虚拟中介形式的,物理中介反而成了虚拟中介的生产源。这些生产源的本质属性是不变的,例如,金融方面,其股权、债券、信托等金融核心功能不变,其所涵盖的契约也是不变的,所面临的金融风险、所面对的监管的基础都是不变的,这种本质属性的固定,并没有在互联网时代因互联网的迅猛发展而发生改变。当我们在分析互联网对传统行业的冲击时,往往用去中介化来描述互联网对传统行业的冲撞,但是我们应该认识到,这种去中介化,并不是消灭了物理中介,而是摆脱了物理中介,实现了和以大数据为依托所形成的虚拟中介的联姻。
所以,大数据的形式其实是一种互联网时代的虚拟中介,它是从传统的物理中介中衍生出来的,从此,市场的生态环境发生了变化:一种线上的虚拟中介,一种线下的物理中介。整个市场被重新构造起来,线上线下两种生态共同支撑着当前的互联网时代走向一个较为繁荣的阶段。
迈尔·舍恩伯格(《大数据时代》一书的作者)认为,大数据的一个重要特点,就是事物之间具有相关性,而因果性倒是处于其次。
其实,这种观点也不新鲜,因为在统计学上,要证明两个事物之间具有因果性,前提条件是这两种事物要具有一定的关联性,即,事物之间的关联性是求证它们因果性的必要条件。所以在某种程度上,舍恩伯格这种观点是将事物之间的相关性和因果性分开看了。从前面的分析我们可以得知,海量的数据并不会无缘无故的产生,线上的大数据中介是传统的物理中介衍生出来的,可以说没有线下的物理中介经过产业链的整合,从而将这些数据整合到线上,那么线上的虚拟中介是不会产生的,所以,数据之间绝对不仅仅是只有联系性那么简单,数据之间的因果性才最终指导着企业如何经营的极为重要的因素。
大数据的形式作为新型的中介形式,本质上还是伴随着互联网的迅猛发展而产生的,这是一种有别于传统中介形式的新型中介,并不能独立于实体经济而孤立存在,没有实体经济的最终繁荣,互联网只能呈现出较为繁荣的假象,而最终会变成没有根基的浮萍,所以,只有线上线下生态同步发展,或才是一个市场较为成熟的表现。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28