拥抱大数据营销时代
众所周知的,以和媒体打交道著称的的公关行业在互联网时代迎来的全新的挑战,越来越多的他要为企业提供直接面向千万消费者的网络服务。
这个行业中的每一个人,无论是主动还是被动,都被这股数据的洪流裹挟着朝着“大数据”时代一路狂奔,拥抱大数据时代就是营销人的唯一“宿命”。
以上文字为放狠话,仅代表个人情绪和观点。
这年头,做营销做公关的,对于层出不穷的互联网应用和由此诞生的新名词儿都必须要知道了解熟悉并且迅速转化在给客户的提案中,所以不管我们是不是真的弄明白什么是云计算什么是大数据,都必须在这条“追新”不死人的路上勇往直前见招拆招。
在谢文老师《迎接大数据时代》一文中,对大数据的定义有所描述:
按照维基百科上的定义,所谓“大数据”(big data)在当今的互联网业指的是这样一种现象:一个网络公司日常运营所生成和积累用户网络行为数据“增长如此之快,以至于难以使用现有的数据库管理工具来驾驭,困难存在于数据的获取,存储,搜索,共享,分析和可视化等方面。”这些数据量是如此之大,已经不是以我们所熟知的多少G和多少T为单位来衡量,而是以P(1000个T),E(一百万个T)或Z(10亿个T)为计量单位,所以称之为大数据。
什么是大数据营销哪?
大数据营销应该值在互联网普及的当下,社会化应用以及云计算,使得网民的网络痕迹能够被追踪、分析等,而这个数据是海量的以及可变化的,企业或第三方服构借助这些数据为企业的营销提供咨询、策略、投放等营销服务的行为,可以被成为大数据营销。
和大数据一样,大数据营销其实也不算很新的概念,只是因为随着云计算、云端应用、各种移动设备的普及,以及facebook、twitter等社会化媒体的兴起,诸如google和亚马逊对数据营销体系的成熟,使得大数据营销受到越来越多的关注并且逐渐成为多数企业的必选题。
大数据营销是未来营销的主战场,因为所有的人在说电视、报纸等传统媒体在增长在放缓乃至衰减,而且随着多网融合,大数据正在将传统渠道的数据融合,由此形成的“数据为王”的营销格局。
未来的企业市场营销费用的分配,除了部分品牌投放外,多数投放都是在大数据指引的,企业的消费群分布在哪里?企业的潜在用户在哪里?通过大数据找到他们分布的地方,然后用有创意的投放形式让他们成为企业的粉丝以及形成销售。
在大数据营销时代,任何投放带来的点击率、转化率和销售,网络舆情,都将以数据呈现,而如何利用大数据的价值,对于第三方机构而言,都是“技术性”的挑战。
当然,需要注意的是随着大数据时代的来临,数据的量是巨大的呈现无规律分散的;对于企业营销人员而言,如何在海量的大数据中,通过合理的方法论找到对企业有帮助的数据,并且将预算合理的分配在为数众多的数据来源的平台上——这对企业营销人员以及企业决策人而言,都意味着巨大的风险。
就好像我们熟知的那句话,“企业不上网是等死,企业没准备好就上网有可能是找死”。
如何在维护现有营销渠道的同时,覆盖更多更好更有效的网络平台,对于品牌企业的市场部门而言,机遇和风险同样巨大。
我们熟悉的google、facebook、亚马逊等,都是大数据营销的领先者,他们通过对大数据的挖掘、追踪、分析以及投放等的数字化手段,为企业实现大数据营销,不仅帮助企业实现营销目标,也使得他们的商业模式更加的具有技术壁垒。
对于国内而言,大数据营销还处于起步阶段。
相对领先的是百度和阿里巴巴淘宝的搜索和竞价广告体系,这是最容易让企业客户理解的数据营销模式——大数据营销对于传统门户的挑战将会更大,显示广告不仅仅会被要求被展示,更将要和企业官方、官方微博、官方主页关联,更精准更有效,对于互联网媒体而言,在大数据营销时代继续保持对广告主的吸引力,除了保持媒体的影响力外,对广告模式的探索也是必须要做的。
这点,新浪微博的机会是无疑是最好的,也是最可以被关注研究的案例。
对于众多国内的第三方营销传播机构而言,很难会像奥美等大企业直接收购和购买成型的数据公司,但是仍然可以通过其他方面拥抱“大数据”。
国内的媒体环境同样很复杂,众多企业对传统媒体的预算并不是太过削减的同时,会逐渐加大对新媒体费用的倾斜,在这样一个新兴的环境下,能够通过边摸索边前行的方式建立更人性化更智能的投放模式,对于从业者而言,机遇大于挑战。
对于大数据营销而言,需要具备以下能力:
1、 营销传播机构要有采集数据的能力:数据的来源取决于网络业的“开放度”。国内互联网相对封闭的环境,使得数据的采集有相当的难度,尤其是在海量的大数据时代;
2、 营销传播机构要有对数据的整理分析能力:对采集数据的分析归纳,可能是大数据营销快速发展的桎梏。做产品的多数是理科背景,做营销的多数是文科背景,所以,你懂的;
3、 营销传播机构要有策略和投放能力:通过对数据的分析和归纳,形成合理的投放决策,要求我们的市场营销人员,不仅是能够写方案写稿件,更能读懂数据看懂表格,还要能够提出需求~
大数据营销时代,营销人员的产品经理化,将是未来数年营销业的趋势。
如何管理和应用这些打数据,控制隐私和公共空间的边际,最大化他们的价值,被技术驱动的大数据营销——这是对于我们这些有追求的营销人的重大挑战。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28