大数据推动社会思维变革
大数据并非新概念
记者:沈教授,您怎么看待大数据这个概念和大数据时代这个说法?
沈阳:我个人认为,大数据并不是一个新的概念。它很多内在的研究,其实我们计算机学科领域一直在推进。比如,对数据的挖掘和分析方法,以及纯数据内容方面的研究就一直存在。在若干年前,大数据已经在某些领域实现了具体的应用。不过,最近两年出来的大数据概念更加强调互联网的因素,更加强调数据的体量,以及数据与各行业的运用对接。大数据概念的推广和它对社会的影响,使得数据分析的概念从计算机学科快速地扩展到社会的各个领域,这是非常有价值的。大数据就是互联网发展到现今阶段的产物,在以云计算为代表的技术创新背景的衬托下,一些原本很难收集和使用的数据开始容易被利用起来了,并且不断作用于各行各业的创新发展,这就是大数据的价值。数据实用化是大数据时代的一个特点。
大数据利于社会治理
记者:您认为大数据思维会对当今社会带来哪些主要影响?
沈阳:大数据思维有这么两个特点。第一个特点是,数据一切可量化。比如说,它有助于我们研究政府官员的民意支持度。又比如,政府的信息公开程度,我们也是可以测量的。比如新媒体指数、城市幸福指数、各城市堵车指数,从大数据的角度来看,这些指数的研究方向和方式就体现了相关特点。第二个特点是,大数据思维特别强调不同数据之间的相关性,乃至于寻找它们之间的不相关性。这如果运用到社会治理上,可以提升政府反应的灵敏度。
记者:今年有句话很火,叫“证明你妈是你妈”。它直指简政放权和政府服务方面的一些问题。但在具体的新闻事件中,我们也可以看出,它还透露出相关部门一些信息共享的问题。比如,要办一个证,时常就会出现“多部门跑腿”的现象,民众要跑完这个部门再跑另一个部门。您认为,随着大数据时代的来临,政府在思维方面需要做什么样的必要刷新?
沈阳:在大数据时代,传统的政务查询、社保查询、医疗教育、水电煤等公共服务将被集成,各政务服务间的信息化壁垒、数据孤岛将会消失,政府、企业、研究机构间的数据可实现安全的分享流通、交易交换。因此,随着大数据的发展,政府首先要进一步把为人民服务的观念和责任意识落实到实际工作中去,要有数据信息开放思维、数据信息整合思维和数据信息分享思维。从互联网的角度来看,政府服务优化是没有止境的。也就是说,不同部门之间要加强服务融合,要加强信息的交换。我们需要用移动互联网的思维去打造一个指尖上的政府服务体系。正如李克强总理强调的“要让政府信息多跑路,群众少跑腿”,我们各级政府应该按照方便办事、就近服务的原则,充分利用大数据的功能,真正完成向服务型政府转变的时代要求。
大数据应进一步实用化和安全化
记者:大数据的发展离不开政府的推动,近年来,我国政府在这方面主要做了哪些工作?
沈阳:我们国家在推动大数据发展方面已经形成了较好的顶层设计。若干个省份有准备成立大数据管理局的构想。在学术支持方面也体现了我国大数据的发展比较蓬勃。还有,大数据的民间团体也非常活跃。大数据相关的公司在融资和产品推广方面也都得到了社会各界的支持。2013年,我们国家发布了《关于数据中心建设布局的指导意见》,提出了以市场为导向,以资源节约和提高效率为着力点,通过引导市场主体合理选址、长远设计、按需按标建设,逐渐形成技术先进、结构合理、协调发展的数据中心新格局。我国在加强信息基础设施建设、增强信息产品的供给能力、培育信息消费需求、营造发展环境、提升公共服务信息化水平等方面采取了一系列具体措施。
在今年6月的国务院常务会议上,李克强总理再次强调了大数据运用的重要性。之后,国务院办公厅还印发了《关于运用大数据加强对市场主体服务和监管的若干意见》,意见提出,要运用大数据提高为市场主体服务水平,加强和改进市场监管,推进政府和社会信息资源开放共享,提高政府运用大数据的能力。这些都有助于推动我国大数据的发展。
记者:沈教授,以您的研究视角来看,目前我国大数据的发展有哪些需要重视的问题?
沈阳:目前我国政府对大数据高度重视,民众对网络、新媒体越来越关注,高校的相关人才培养也在作出相应调整。我个人认为目前需要重视的问题有这么几个。第一,大量的权威数据资源集中在政府手中,而很多数据我们目前还没有开发。所以,政府应该开放更多的数据源。在政府数据开放方面,我们还需要迈向一个新台阶。第二,相关部门在保护隐私安全方面要有更多的考虑。我们要建立有效的法规机制,让隐私权和大数据的社会便利性获得一个最佳平衡点。第三,在数据的流入和流出方面,我们需要更加清晰的界定。在不同领域,我们需要更多的数据标准。第四,要加强大数据的科普。既不能神化大数据,又要让大数据在更多领域取得快速进展。第五,大数据研究只有与实际接轨,工具化、服务化和实用化,才能解决具体问题,从而提升社会的生产力。
记者:作为相关方面的资深专家,您和您的团队在大数据方面做了哪些深入研究,或者您近期有没有什么研究计划?
沈阳:我们构建的新媒体指数涵盖了不少微博数据、百万级别的微信数据,还有APP的数据等,我们目前主要的研究重点在大数据的数据源、大数据的分析模型、大数据的发布服务等方面。我们团队与教育部、新华社、人民网(603000,股吧)、新浪网、腾讯网等单位均有紧密合作,可以说,我们已经有了一个很好的研究起点。我们还做了一系列的评估指标,会对大数据的发展方向做一些客观中立的学术性评估。此外,我们还试着在新的领域扩展大数据的应用,比如说传感器新闻、互联网的虚拟社群研究等。当然,每一个团队的精力都是有限的,研究需要聚焦。我们会广泛关注,重点突破,进行不同学科之间的合作。我们团队和清华的大数据研究院有密切的合作。我们现在有若干项目是在国家有关部门的重点支持下进行的。
大数据需要复合型人才
记者:今年7月22日,国务院办公厅就2015年上半年工业通信发展情况举行发布会。工信部表示在进一步贯彻“互联网+”指导意见中,将重点推进重要工业云、工业领域大数据等发展,而“互联网+”和大数据发展的核心在于人才,清华大学作为国内一流学府,在相关方面是否已经有培养计划?
沈阳:对大学生的培养,对大数据人才的培养应该符合教育规律。我个人觉得新闻传播专业的学生大一大二的时候,还是应该强化他们的经典阅读。强化文化修养和理工科的逻辑思维。如果只是培养学生的浅阅读能力,如果学生不具备深度思考、缜密思维的能力,那就难以成为优秀的大数据人才。优秀的大数据人才是复合型人才,需要中外融合、文理相通、深浅结合,以及理论和实践的结合。因为我们需要提供能解决实际问题的产品。目前,包括清华在内的一些国内高校已经有一系列的培养方案。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28