互联网时代,应该了解五种物联网大数据
大数据是我们这个时代最伟大的经济机遇之一。
但它的概念非常模糊。在一些谈话中,不同的参与者用“大数据”所表示的意思可能有以下三种:1.大量的数据;2.超出传统数据库功能的数据集;3.使用软件工具来分析前两个意义的数据集。
物联网最显著的效益就是它能极大地扩展我们监控和测量真实世界中发生的事情的能力。车间经理知道如果发动机发出呜呜声就说明出现了问题。一个有经验的房主知道烘干机的通风系统可能会被线头塞住,从而导致安全隐患。数据系统最终给予了我们精确理解这些问题的能力。
然而,挑战在于使这些让信息更有价值的系统和商业模型不断发展。想一下智能恒温器在峰值功率很紧张的情况下,公用事业单位和第三方能源服务企业想要每分钟准确更新能源消耗情况:通过精确调整能源并最大化节省能源,使得夏季普通的一天和节约用电的一天能够有明显的区别。但如果把时间缩短到午夜至凌晨四点间,对信息的需求就不是那么急迫了:数据主要在确定长期趋势时才能有价值。
现在从消费者的角度思考。15分钟的数据更新间隔都有可能导致超负荷。这不仅仅没有价值,还可能会造成贬低它价值的麻烦事。相反,消费者所需要的不过是一份能够指明一些趋势的月度总结表。
我经常跟人们讨论关于“数据价值”的挑战。下面的列表总结了数据的一般类别以及制造商和服务提供商所追求的机会。
五种大数据类型
状态数据
冷库中的空气压缩机是否正常运作?它们中是否有一个已经罢工了?不用担心,状态数据可以提供供应商和消费者关于物联网的实时动态数据。
状态数据是物联网数据中最普遍、最基础的一种。事实上所有事都会产生类似的数据,并把它作为基础。在许多市场中,状态数据更多地被用作进行更复杂分析的原材料,但它也具有它自身的重要价值。
看看Streetline是怎样找到停车位的——它创造了能够提醒订阅者空余车位的系统。当然,长期的数据能帮到城市规划者,但对于消费者来说,实时状态数据才是最重要的。
定位数据
我的货物到哪儿了?它到达目的地了吗?定位服务是GPS应用的必然趋势。GPS非常强大,但在室内、人潮拥挤的地方以及快速变化的环境中的效果并不明显。那些试图追踪托盘以及机械叉车的人可能会需要实时信息。
作为早期的物联网市场,农业领域也需要充分利用位置数据,因为农场主通常需要在很大的地理面积上定位自己的设备。我们已经看到了一些能够帮助人们定位钥匙的消费品的出现,这意味着在为商业和工业用户提供服务的领域存在着更大的市场,尤其是在时间紧迫时,这些领域有大量的资产需要追踪的情况下。Foursquare针对油漆仓库的发展就是抓住了这样一个巨大的机遇。
个性化数据
不要用个人数据来拒绝个性化数据。个性化数据指的是关于个人偏好的匿名数据。消费者自然会对自动化产生怀疑。因为一些住宅管理系统比起你的舒适更关心节省的成本,所以往往你不想困在一个昏暗的办公室或者冰冷的酒店客房。自动化技术同样也存在安全隐患。
尽管如此,自动化也是不可避免的。没有人会为了节省4.75美元而不停地用手指来试恒温器的温度。同样,那些依靠人工交互的照明系统也失败了(一些智能照明生产者希望用他们的传感器数据告诉商店的管理者何时应该打开结账通道)。挑战将围绕开发应用程序和产品规则而展开。
可供行为参考数据
把这个看作是有后续计划的状态数据。建筑物消耗了整个国家电力的73%,并且其中一大部分(根据EPA显示,最高达到30%)被浪费了。为什么呢?因为对于大多数建筑物的所有者来说:能源是次要的问题。他们虽也想解决这一问题,但担心成本、精力以及一些棘手的局面所产生的损失会超出收益。
对于这一问题相应地产生了两种方法:1.能够改变系统实时状态的自动化技术;2.能够使人们改变行为习惯或者做长线投资的说服力。Opower开创了关于说服力的解决方案,也就是提供用户及其邻里之间使用能源的对比数据。根据他们自己的研究,这些具有说服力的数据能使能耗降低2到3个百分点。
反馈数据
你了解你的顾客的真实想法吗?你也许认为你了解,但是你可能错了。在不远的将来,生产者还能分析从已销售的产品中获取的数据,从而更好地了解产品在现实世界中的使用情况。现在大部分公司并不太了解他们产品的使用状况。这些产品从分销商处装运,从零售商处销售,最后进入了千家万户。而使用者和生产者可能永远都不会有交集。
物联网创造了一个从消费者到生产者的反馈回路,在这里产品生产者可以通过适度水平的隐私、安全以及匿名性来检验产品的实际表现,并鼓励持续的产品改进和创新。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28