大数据思维下的统计新变革
日前,谷歌宣布其云计算平台通过大数据分析准确地预测了巴西世界杯8强。据了解,谷歌云计算平台使用了英国体育数据提供商Opta Sports的数据,评估了全球每个职业足球联盟过去多个赛季的情况,以及巴西世界杯小组赛期间的统计数据。于是乎,大数据再度成为舆论关注的焦点,对于其应用价值的讨论更加热烈。
然而,我们发现,即使以谷歌强大的技术实力,也不得不从英国体育数据提供商Opta Sports那里获取数据。也就是说,数据的采集并不是谷歌的优势,大数据产业走向商用和规模化发展,更多的要依赖Opta Sports这样的数据采集者。从这个角度看,作为最具共识性和采集能力的统计部门,无疑将是大数据产业发展壮大的基础。反过来看,从大数据发展的趋势看统计行业的发展方向,也必然全面应用大数据思维。我们注意到,从国家统计局局长马建堂在2012年年底提出“统计部门要拥抱大数据时代”,到不久前国家统计局在厦门建立首个大数据基地,可以断言,统计行业的大数据变革已经到来。
2013年11月,国家统计局与百度、阿里巴巴等11家企业签订了大数据战略合作框架协议。此举目的在于共同推进大数据在政府统计中的应用,不断增强政府统计的科学性和及时性。马建堂在协议签订时表示:“现在许多发达国家纷纷将大数据利用提升到国家战略层面,我们也要适应这一大势,将大数据视为国家战略资源,主动拥抱大数据时代,积极抢抓机遇、应对挑战。”数据与统计是一对共生词,而数据成为生产要素的前提条件也是有效的梳理与归类,这恰恰是统计的内容。马建堂说,大数据为政府统计提供了总体性、非结构化、丰富真实的原始资料,可以极大地缩短数据采集时间,减少报表填报任务,减轻调查对象负担,提高统计数据质量。
一场统计方式和方法的变革正在酝酿。企业既是大数据的主要生产者,也是经验丰富的使用者,还是大数据的直接受益者,有数据的资源、有应用的技术、有市场的机制。而国家统计局作为组织领导和协调全国统计工作的主管部门,具有统计制度和标准制定,统计数据搜集、发布、分析等方面的优势。
统计数据是各级领导作出科学决策的重要支撑。随着企业一套表建设的基本完成,各行各业的数据被采集上来,这只是第一步,用好这些数据是关键。企业一套表只是一个业务系统,更重要的是在这套系统上帮助统计部门搭建一套数据资源体系,通过这套体系来对数据进行规划、整理和加工,建设监测评价中心、辅助决策中心,这也是统计行业未来发展的必然趋势。
现在一些地方统计局已经开始做统计方面的规划和使用。例如原来的统计工作主要是查询,现在希望除了查询、检索、展示之外还具备监测、评价的功能。监测评价需要标准,在政府部门这个标准就是政策。监测是对企业、家庭等对象进行调查,数据上传之后经过计算、加工等与初定的指标相比较,并对监测结果进行评价,发现问题及时预警、报警。辅助决策则更需要智能化,当发现监测评价出的结果与初定指标存在较大差异时,就要追本溯源,为领导提供准确的问题分析报告,列出导致问题的主要原因,提出可行性建议,为领导提供辅助决策,为其做出下一个阶段的判断和调整提供帮助。例如,自去年以来,浙江温州市统计局建立了GDP联席会议制度,按季度召集30多个部门进行分析论证部门数据与GDP数据之间的关系,特别是充分运用电力、银行、交通、财政、外贸等部门数据,以及对GDP数据的影响,使GDP数据更加科学可靠。今年进一步扩大了GDP联席会议职能,把涉及部门的经济、社会、民生等监测评价数据进行综合审查分析,进一步提高统计数据质量。
与此同时,统计行业的大数据变革,也将为大数据产业的下一步发展打造坚实的基础。从企业一套表到电子终端采集数据,中国统计的技术和制度改革近两年不断深入,而与大数据概念的交汇与融合也将助推中国官方数据更加真实全面。统计部门在人口、农业、投资、交通等领域,大力研究利用遥感RS、地理信息系统GIS、全球定位系统GPS为代表的空间信息技术和物联网技术,既极大提升了统计信息化水平,也为进一步推进大数据的统计应用打下了较好的基础。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28