大数据帮助零售商避免沦为“展示厅”
对实体店零售商来说挣钱难度与日俱增。经过亚马逊等电商二十多年对传统零售型经济模式的冲击,智能手机的普及,数字化消费者的诞生以及次日交割⑴的繁荣,这一切都似乎使传统零售商的未来变得扑朔迷离。
我用“似乎”一词是经过深思熟虑的,因为我相信零售商将通过学会综合运用大数据分析、多渠道数据和持续(自我)更新,重回昔日的繁荣。
这些高风险的议题是美国零售联合会年会考虑的头等大事。该会议于一月份在纽约召开,讨论了大数据和消费者不断变化的期望怎样和云计算、数据分析、社会化商业以及手机交叉,最终从根本上改变商业——这对于零售商而言意义重大。
就个人而言,我对零售商的未来感到兴奋不已。零售商们通过应用高科技能促进对消费者的了解,并提供一切他们想要的。最终,整个业界就能实现将每个消费者区别对待的长期目标,而不是把他们聚集在分区混乱的市场里浪费时间。
作为数据专家,我很乐意见到大数据分析被零售商应用。这项技术是揭开人类消费行为奥秘和了解消费者一切需求的关键因素。
如今,零售商在许多时候都有大把机会去了解他们的顾客群体,以及那群人常去的市场。移动计算应用在用户允许的情况下随时都能让商家获取消费信息。忠诚计划⑵能授权他们访问消费者的历史消费记录。把这两个因素结合起来,无论是实体店还是线上店铺,你都能立刻与你的顾客建立联系,满足他们的需求。
大数据分析能辅助预测消费者的需求。通过研究个人消费习惯并将消费模式与他们身边所发生的事情联系起来,零售商就可以预测消费者的行为。受此启发,零售商能更好地掌握消费者不断变化的需求,他们不仅对此抱有希望,甚至尝试改变消费者的消费行为。
我的公司也用大数据分析天气对消费者个人消费行为的影响。我们将销售数据和美国国家气象局的数据结合分析,这样零售商就能利用忠诚计划的数据,以可预测的方式来确定消费者对天气的反应。
社交媒体为零售商提供了一个促进对消费者了解的良机。商铺能分析顾客们的个人账务。通过匹配不同时间段的消费模式和消费者所属人群,商家能调整他们的营销策略——或许会使用数字化大屏幕对某些特定消费者显示(不同的)商品名称和价格。
最近,大型零售商纷纷制定线上商铺作为实体商铺的补充,但这两种模式几乎都没什么联系。这将使零售商们错失良机。通过多渠道市场技术整合实体和虚拟世界,大数据分析技术变得更加势不可挡。
为了给消费者提供更加持久、方便、个性化和相关的体验,协调所有消费者能接触到的因素就变得尤为重要,包括:促销、商铺、网站、客户服务中心、广告、移动应用和社交网络互动。
事实上,这个途径就是对抗“展示室现象⑶”挑战的关键。
越来越多的消费者选择在实体店体验商品,然后用手机或者平板电脑在网上以一个更优惠的价格购买。我建议零售商不要视手机和平板为眼中钉,而将它们视为自己商铺(业务)的扩展。
通过消费记录,零售商能了解消费者在该商铺的购买习惯,然后利用(线上)应用或(实体店)推销员来吸引顾客。无论通过何种方式,他们留住顾客的几率都将大大高于被网上打折商铺抢走顾客的几率。
我们正处于多渠道市场的早期,但我坚信通过利用大数据分析,移动计算和社交网络,零售商将找到无数成功留住顾客的方法。革命性的实验是非常重要的。尝试一些新东西;不论得失;通过学习;再次尝试。
砖家们乐此不疲地宣称实体店已死,但美国90%以上的零售交易还是以传统的方式进行着,零售商们不断自我更新。
我很荣幸与一批最有创造力的零售商合作,因为他们正在改变21世纪的购物体验。他们明白必须不断重塑自我,才能整合线上线下平台。最棒的零售商一定会成功。而最终的赢家还是消费者,他们的一切需求都将得到满足,以一个实惠的价格。
译注:
⑴one-day delivery(次日交割):合约的交割日期为下一个交易日时。
⑵loyalty programs(忠诚计划):是公司基于客户对公司特定产品或服务累积购买的基础上对客户所提供的激励。
⑶phenomenon of “showrooming”(展示室现象):电商的售价通常比实体店便宜,因此,消费者去实体店体验产品,然后回家在电商网站上下单,这种现象已经司空见惯,被称之为展示室现象。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28