为何大家对大数据表现出如此激情_数据分析师
为何大家对大数据表现出如此的激情呢?看看外面精彩的世界便知一二。
大数据最近很火爆!马云收购恒生终于在传言不久后,被恒生电子股份有限公司股东股权变动的提示性公告证实。马云不好好经营电商打通线上线下,他花33亿收购恒生干嘛?令许多人疑惑不解。有人甚至发出感慨:“愚人节那天才见53.7亿入股银泰,今又见33亿入股恒生。各种整合融合势不可挡!线上虽易,线下不易,且行且珍惜。”其实当你明白何为大数据,就知道这次马云又在布一个很大的局,他也开始向大数据领域发力了。
在美国,大数据产业发展已步入大规模商业化阶段,已广泛渗透到经济、政治、教育、安全和社会管理等众多领域,美国提出大数据的战略地位堪比工业时代的石油。
在欧盟,相关报告指出,欧盟公共机构产生、收集或承担的地理信息、统计数据、气象数据、公共资金资助研究项目、数字图书馆等数据资源的全面开放,预计每年将会给欧盟带来400亿欧元的经济增长,欧盟认为大数据是促进经济增长的重要力量。
在英国,经济与商业研究中心CEBR 2012年研究报告进一步证实了大数据的经济价值,2017年预计将达到407亿英镑。
在韩国,“智慧首尔2015”计划指出:“首尔开放数据广场”是开放性的数据中心,已有33个数据库、880个数据集,为用户提供十大类的公共数据信息,包括育儿服务、公共交通路线、巴士到站时间、停车位、各地区天气预报及涵盖生活方方面面的信息。韩国认为公共数据已成为具有社会和经济价值的重要国家资产。
由此可见,大数据早已不是云山雾罩的新生事物,马云知道,全世界都知道。可以预料大数据将会成为未来产业财富扩张的重要引擎。
而在中国随着经济增长模式的根本性转变、新技术新产业的兴起、激烈的行业竞争以及自身价值创造的业绩压力,无论是金融业还是产业都需要借助对自身业务数据、行为、过程的分析与优化,推动自身的转型与创新。
产业是经济基础,金融对产业的发展起到催化剂和倍增剂的作用,金融只有与产业融合才能产生放大效用,才能产生巨大价值。但是长期以来由于数据统计、集成、储备和分析模型的不完善,网络技术的不成熟,产业和金融无法进行有效的结合,产业金融也面临着不均衡发展的困境,尤其像艺术品、发明专利、金融票据、林权、农地、旅游、种子、机器人等之类比较难定价的特殊商品更无法形成资产证劵化。
互联网元素的要点就是去核心化、扁平化、便捷、数据思维与公开公正,而大数据是支撑和优化信息资源、自然资源、客观因素的量化性综合指标认定,它强大的系统数据集成和分析能力,势必给人类社会带来前所未有的应用领域和想象空间,成为人类社会等同于自然资源、人力资源一样重要的未来不可或缺的战略资源。
互联网促进了科技的创新,提高了生产力,而大数据及其运用在我国未来产业经济发展中将扮演举足轻重的角色,特别是金融围绕产业升级及换代,植入互联网大数据元素将成为无法估量的产能!概括为产业-互联网-金融三位一体的融合。
然而大数据于产业金融领域的运用究竟如何很好的实现?概括起来为以下两方面:
其一、系统模型:通过检索引擎及爬虫技术采集产业和产品互联网海量数据;通过分词矩阵清洗、排重、过滤等预处理方式,存储一批完备的产业相关的金融大数据;通过检索、统计和智能分析得到初步的行业分析报告,然后运用金融工程及各类风险控制模型构建以产品价格为预测的估值模型,以价值链为基础的决策模型并提供适合产业的基于大数据支持下的产业综合指数及参考指标。
其二、系统实现:
1、产业和产品的价值评估:充分利用计算机技术和网络技术,实现对产业、产品的综合评估及计算机自动化处理,管理上实现现代化、科学化、自动化。
2、产业的风险预警及预测:通过此系统实现产业以及产品的价格的预测及风险的预警;
3、产业的风向标的参考指数及指标:系统整合产业及金融大数据云平台等众多资源,由来自各个方向的数据,结合多种评估模型,分几段实现产业指数体系及评估系统。产业指数包含综合指数、分类指数(产品指数、评估指数等)。该产业指数将成为产业市场的“晴雨表”和引导投资的“风向标”。
以大数据林权为例:通过检索引擎及爬虫技术采集互联网海量数据;通过分词矩阵清洗、排重、过滤等预处理方式,存储了一批完备的林业及林业相关的金融大数据;通过检索、统计和智能分析得到初步的行业分析报告,然后运用金融工程及各类风险控制模型构建以产品价格为预测的估值模型;以林业价值链为基础的决策模型并提供适合林业的基于大数据支持下的行业综合指数及参考指标,打造“林权交易评估参考系统”为核心的产业金融投资生态圈,构建林业金融大数据平台;并融合支付、交易和其他衍生业务,构成领先的产业互联网金融综合解决方案,真正使企业与金融部门通过一定的关系相互连接、贯通,实现产业资本和金融资本的相互转化。
今天,大数据云端存储已经成为一种时髦,数据源的采集,人才,数学模型,加上心理学的分析后对数据的运用成为一种必然。目前很多大数据公司花费大量的资金及人力仅仅是采取了大量的数据,在预处理及运用上还有很长的路要走。
面对行业分割,部门垄断的事实,只有创新的方法才能实现数据的获得,才能使数据库成为人才资源一样的战略物质,而不是束之高阁让宝贵的数据资源随着时间的流逝贬值。让大数据为国家发展规划提供帮助,为实业兴邦企业发展指明方向。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28