双12支付宝:以立体的方式凿开线下大数据冰层_数据分析师
2014年双12,网上流量疲软,而3000万大妈狂扫便利店。
看上去又有钱又任性,而其本质,是支付宝O2O落地,是阿里体系立体大数据的开始。
传统连锁零售要么学会与“狼”共舞,善用支付宝,要么,被玩死。
先看“二维”和“三维”:
1传统实体零售是二维平面的;
2传统电商(淘宝天猫)也是二维平面的;
3传统的信用卡支付是二维平面的,主要是银联卡;
4传统的线上支付也是二维平面的,换言之,早期的支付宝也是二维的。
所以,即使双11全网成交额达到571亿、线上消费占5%以上,但阿里巴巴的数据是线上二维的,与现实中的人是割裂的,落不了地。
但O2O是三维的,贯穿三维有几个核心要素:1联接、2会员、3金融,尤其是支付。
再看支付宝,三亿实名用户信息,以网上交易为主,拥有绝大多数网上交易数据,这是宝藏。这三亿人其实都是银行卡用户,换言之,银联的用户。这三亿人也都是网购人群,年轻人为主,社会消费的主力军。但不可否认的是,95%的消费在线下,而线下交易是银联的地盘。
反观支付宝的手机客户端,拥有上亿装机总量,每天的点击量(Daily Active User),不亚于手淘。但是,它只专注于支付。其扩展的“服务窗”(类似微信公众账号),也是媒介,可以等同理解为广告窗口,直接跳转到支付环节的简洁步骤,不啰嗦,没废话。
再看团队基因,阿里系里支付宝团队的服务意识相对较强。
2013年双11,阿里巴巴O2O最有效的积累,是和银泰百货的支付宝合作。尽管声波支付实际效果欠佳,但留给支付宝的是空军落地的宝贵经验。
2014年,京东和阿里抢夺便利店O2O,京东抢的是物流,阿里抢的是支付,个人认为支付宝技高一筹。
京东金融,太弱小,还无法发力。微信支付,还在寻找和丰富其线下的应用场景,姑且不论。
重新评估O2O的几个要素:“支付”作为第四个维度,just follow the money,把“人、货、场、时间”都穿插在一起……
我认为,支付宝真正的意图是:与连锁便利店合作,用低价高频的SKU进行补贴,撬开地面网络,获取地面二维网络的用户和交易数据。
在这种情况下,银联由于其机制原因,已经溃不成军,其反击还需要相当的时间。
所以,支付宝进入线下的第一波,动的是银联的奶酪,但还不是动银行的奶酪。
总结起来,支付宝在双12的收获如下:1从空中进入地面零售网络,形成三维。2获取地网的用户,绑定支付宝,交易信息。3最核心是让用户形成支付习惯,这是最可怕的力量。
相比之下,微信只有联接,没有交易,没有实名会员,微信支付还要跑步前进才行啊。
有个比喻,大象打架,菜园子毁了。有一类公司,会彻底被拍死:拉卡拉式第三方支付。跟不上移动互联网,拉卡拉基本上武功全废。因为商家透过便利店支付宝,会马上知道:原来网上的用户,就住在全家附近啊?原来网上买衣服的用户,线下买85度C的某个面包啊?这种大数据,线上线下交融的大数据,其威力巨大无比……
再回到4个身份:1肉身,2网络匿名身份,3权益身份,4支付身份。支付宝至少得到3个身份。大妈,不太在意权益身份,为了省钱,管它呢。这样支付宝4个身份就都有了。
当然,支付宝没有社交属性,这是微信比它牛的地方,但是支付宝里的社交属性,是强关联。“老子钱都为你花了,人还不是我的吗?”
支付宝,阿里O2O的真正使者。无论喜欢与否,O2O的真正风暴已经来临。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28