大数据是人类又一个技术乌托邦_数据分析师培训
说到大数据,最近互联网各种热词很多,各种概念满天飞,其中不乏有忽悠一说。大数据到底是什么,会给我们生活带来哪些影响?
【大数据是一个时代,“国家队”很及时】
去年底宣布的一个事情,将对未来有深远影响,现在大家还没意识到。
2013年11月19日,国家统计局与11家国内企业签署战略合作框架协议,合作内容涉及大数据应用统计标准,以及企业数据补充政府统计数据等领域。有分析称,在大数据国家战略日益强烈的情况下,统计局介入将进一步推动大数据的应用落地。
首先,大数据绝对不是忽悠,它是当下IT领域最时髦的词,简单说就是从各种数据中快速获取价值信息的能力。美国是最早发现和使用大数据科学价值的国家。2012年3月,奥巴马政府宣布投资2亿美元拉动大数据相关产业发展,将“大数据战略”上升为国家战略,奥巴马政府甚至将大数据定义为“未来的新石油”。当时美国政府声明说通过提高美国从大型复杂的数据集中提取知识和管理的能力,来加强整个国家的竞争力,这被认为是跟互联网同一个级别的时代。显然,大数据不止是一个词汇,更是一门技术,是一个产业时代。
而中国作为世界上人口最多、GDP排名第二的国家,成立大数据国家队是非常及时的。大数据的精髓在于“大”,它不是抽样而是全样,它不是盲人摸到的象腿或者是象鼻子,而是整个大象本身,大数据的精妙处在于用的人越多越增持,通过这样一个模糊的宏观判断,能够完成一个精准的个体推荐,从而会让整个生产效率得到极大提高。
【不开放大数据,周边创业是无米之炊】
目前我国大数据应用还存在一些问题。
首先,大数据不是IT公司的专利。第一批国家统计局引入的战略合作伙伴,大多数还是聚焦在IT公司,其实不是只有IT公司才有大数据,如线下零售巨头企业在实体经济中积累了很大的数据资源,他们数据的深度和广度不亚于甚至超过互联网公司。第一批进入的合作伙伴之一上海钢联其实掌握了煤炭钢铁在内的大宗商品数据,这是国家统计局没有涉及到的。因此,非IT类公司、拥有巨大的业务形态的企业,都可以成为第二批国家统计局大数据合作伙伴。我们也看到,国家统计局作为国家法定职能部门把姿态放平,主动寻求和民营企业的合作,这是非常可喜的进步。
第二,拥有大数据的IT公司和非IT公司应该打破数据格局。我们看BAT(百度、阿里、腾讯),近期围绕微信和淘宝发生新一轮互相屏蔽,在早前百度和淘宝进行了屏蔽,这三家掌握搜索和社交和消费的数据,本来是三方的数据汇总才能拼凑出比较完整的网上信息图谱,但是三家公司为了彼此的商业利益,并没有体现出数据合作的意愿,而是互相封杀,这将给社会数据的流动带来伤害。因此,在保证一定商业利益的基础上,巨头的眼光应该放远一点,打破数据格局。这看起来是一个很难实现的乌托邦。不过任何美好的事情都需要乌托邦的愿景作为起步的。我们看到许多美好的事情,比如说全世界的互联网,全世界的人通过互联网联结在一起,开始大家觉得乌托邦,现在已经形成现实。
第三,应该呼吁政府相关部门进一步开放市场,因为围绕大数据不管是应用还是创业,最核心的是要有数据的源头,然后才能进行采集、编辑,重新编制。现在大量的关于国民经济或者说民生的数据其实还在封闭状态,在工商部门、银行、保险、公安、医院、社保,包括电信运营商机构的手里。如何让这些数据流动起来,能让大家更方便,其实应该由政府带头实现等级制数据的开放共享。在不违反保密或者是国防的情况下,如果不开放大数据,那么大数据研究和创业都是无米之炊。
所以还是应该抓住这个机遇,进一步开放市场,不断试点,一步一步把数据开放转起来,带来更多的应用价值。
【隐私保护与数据精准之间的平衡】
数据应该共融共通,还要开放市场。这个开放市场不仅仅是企业之间开放,企业对个人也要开放。
为什么现在开放变得这么谨慎?因为开放有风险,一是安全问题,二是伦理问题。安全问题是对于国防、军事以及整个经济信息的保密顾虑而言;伦理问题是从个体角度而言,即网民的隐私。大数据的作者曾经说过,在一个有组织的社会里,几乎每一则信息都在不同的时候,以不同的形式公开过。就公民而言,他的信息一次性在网上公开,和第一种情况有本质区别。
大数据平台在提供服务的同时,也在时刻收集用户的各种消费习惯、浏览习惯甚至生活习惯。如何保护用户的隐私成了大数据时代发展过程中不可回避的问题。因此,大数据的应用价值在于个人隐私保护与数据精准之间的平衡。
要真正做到大数据的开放,还需要很长的路走。我们相信,大数据会成为互联网之后,人类又一个技术乌托邦。大数据的启动跟互联网有着相同的逻辑,一开始大家谈,不知道怎么做,会有一轮甚至几轮比较明显的产业泡沫,但是随着那些看似乌托邦的愿景,一个技术、一个尝试的创业公司的进入,会一步一步变成现实。
未来大数据会怎样,创业者跟投资者都需要很谨慎。目前来说,就大数据做预测是非常危险的事情,比较谨慎的说,可能在三年左右会看到一些具体的、受到社会应用的大数据,往长期看则还是未知数。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28