大数据让跨界更容易_数据分析师培训
上个世纪中叶,计算机还是一个要占据整个房间的庞然大物。在冷战期间,美国获取了大量前苏联的各方面资料,但苦于翻译人才不足,只能求助于计算机技术来解决翻译压力。1954年IBM公司将250个单词和语法规则搭配,将60个俄语断句翻译成了英语。当时有乐观派专家对媒体称“三年后的机器翻译一定会非常成熟”。
但这种思路很快就被证明是种误导。因为语言的变化是极其灵活的,一个单词在不同的语境和情绪下有着截然不同的含义。就像是中文的 “哪里”,可以是询问位置,也可以是一句客套话。而IBM的单词配语法有着很大的局限性,语料库始终在追求精确的语法,而人们的表达却越来越随意。到20 世纪90年代,IBM投入了大量的资金挑战机器翻译,却收效甚微,最终项目无奈终止。
2006年谷歌公司开始涉及机器翻译。谷歌的语料库跳出了两种语言互相对等匹配的传统文本翻译思路,不再仅依靠两种语言之间严谨的语法词法联系。开始基于全球互联网,利用一个更大更庞杂的数据库来进行翻译。
如果只追求单词和语法的准确,那谷歌语料库只能算是一堆残渣废料。因为谷歌语料库的内容既有来自国际组织的标准文件,也有来自网络论坛的“闲言碎语”和大量其他未经处理的互联网讯息,它掌握了不同语言质量参差不齐的文档大约有几十亿页,其中包容了大量的拼写错误。这海量的“原版”语言构成了跨语言表达的“训练集”,可以正确地推算出词汇搭配在一起的可能性。谷歌翻译出来的文字从语言美学角度来看确实没有美感,但语义沟通还是不成问题的。学会一门语言到通读文献的水平需要数年的时间,而在这种机器翻译的辅助下只需要一瞬间,细想起来运用大数据手段解决沟通壁垒的效率还是立竿见影的。
大数据的成功运用打破了不同语言之间的交流壁垒,提高了两种语言的沟通效率。在现实的经济活动中,去理解一个陌生领域的难度不亚于理解一门全新的语言。这样的问题在银行风控部门的工作中表现最为突出。各个行业发展迅速,银行面对的申请贷款企业来自各行各业,每个行业的特点迥异。尤其现在跨行业经营的现象与日俱增,这大大提升了对银行客户经理本身的素质要求。当银行面对一个全新的行业时,跨行业的理解难度就像是面对一门新语言。其次出于成本的考虑,银行负责贷后监管的人手毕竟有限,即便每个责任人再努力也不可能有充足的时间对手上的若干家贷款企业逐一跟踪。所以在短时间内有效了解该行业的管理特点,风险易发节点、频率对银行的贷款风控至关重要。简而言之,银行风控部门亟待解决的问题就是如何降低跨界沟通难度、提高跨界沟通效率。银行和企业的“跨界沟通”也需要一种有效的“翻译”手段。
大数据手段冲破语言沟通障碍案例对经济领域的跨界沟通有着重要的指导意义。传统的思路中,资方会通过财务报表来衡量一个企业的优劣,但事实证明这种办法是“小数据”思路,在数据采集手段更为便利的今天,似乎财报的短板在日益凸显,毕竟财报的三张表是可以用PS手段来美化的,并不能如实反映企业情况。
谷歌语料库包含了互联网上的各种语言“细节”,在翻译的过程中会甄选最贴近真实情况的平行文本,所有能最大限度反映语言的本意。一家企业的财报数据量一般是几十个KB,而如果统计几年的明细数据可以到十几个GB,这写明细数据包括企业订单、库存、下线、结算、付款这些核心环节的所有数据。通过相应的大数据算法模型来进行清洗和分析后“翻译”成银行或相应部门能够“理解”的版本,是解决信息不对称问题的有效途径。
李克强总理在刚刚结束的两会上也提到了“互联网+”和“大数据”的概念,未来几年的大数据和互联网的发展基调非常明显。事实上国内已经有企业在“大数据金融”领域走在了世界的前列,通过大数据手段为中小企业争取了数十亿的纯信用融资,并且至今没有发现一笔不良。大数据的概念在深入人心,大数据成功实践的案例也在不断增加。文章来源:CDA数据分析师官网
大数据的魅力在于“通达”,大数据手段可以提高两种不同语言的沟通效率,可以降低不同经济领域的跨界难度。尤其对于金融部门,大数据手段恰可以真实反映企业状况,提前判断未来可能发生的经营风险。大数据时代来了,谷歌让两种语言的沟通更顺畅,经济领域的跨界沟通还会远吗?
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28