电商涉足P2P背后的逻辑:大数据是最可靠的风控依据
随着P2P网贷的不断发展,网贷模式也在不断地更新。从最初的拍拍贷的纯线上模式,到红岭的大单模式,再到以有利网为代表的通道模式,P2P网贷在国内所延伸出来的模式创新层出不穷。时间进入2014年下半年,随着股市大涨,股票配资的业务模式应运而生,而羊年开年后,行业又爆出知名电商多赢涉足P2P网贷,电商不卖商品,卖钱来了。电商做P2P,有哪些优势呢?贸贸然而进入,又哪来的自信呢?
P2P面临的最大问题是什么?
目前在P2P网贷行业内比较主流的观点:未来行业一定是“大而全与小而美并存”。在我个人看来,网贷领域是很难做到大而全的。很多人也拿陆金所这样的巨头在行业中的地位,来判定行业的格局已经初步形成。但是最近我们也看到了,陆金所准备单独拆分P2P业务,由此可见,P2P业务在陆金所的整个业务体系中所占的比例也不算太多。除去陆金所,以P2P为核心业务的红岭创投,不断被坏账缠身。另外,几家号称排名前列的网贷平台,相信其所面临的风控压力一定也不小。
在我个人看来,很多平台的业务其实已经做到了天花板。再继续扩大平台的业务量,其风险就会超出平台的可控范围。什么这样说呢?最核心的问题就是平台无法解决风控问题。风控之所以难以解决,最核心的因素还是由网贷本身涉及的借贷市场特性决定的。网贷业务涉及的基本就是次级贷市场,本身业务质量并不高,好的项目数量更是屈指可数。这种情况下,要大量提升业务量,风控质量必定下降,坏账隐患出现。因此,在平台做到一定规模的情况下,风控基本就会成为平台发展的最大瓶颈。而金融的地域性,在一定程度上决定了异地风险的不可控性。在这样的情况下,网贷领域巨头很难出现,未来网贷行业一定是呈区域细分、行业细分的百花齐放状。
电商企业涉足金融,行业机会何在?
目前,银行端基本不愿意把钱借给电商企业,因为对于银行来说,他们更偏好实体经济,实体抵押。电商的交易数据、物流数据等传统银行也不愿意承认。 但是,银行不愿意做的业务,其业务质量就一定不高吗?非也!更多的还是因为传统的金融机构在电商领域缺乏相关的经验。但是,实体经济转型的速度越来越快,对互联网的依赖越来越重,越来越多交易从线下搬到了线上。
大量的电商企业在需要大量备货,其背后的金融需求该又谁来满足? 国内最大的几家电商平台,早在几年前就开始面向电商企业提供金融服务了。阿里、慧聪是国内最早涉足这块业务的企业。但是,不管是阿里还是慧聪,其所提供的金融服务毕竟有限,远远无法满足电商领域的真正的融资需求。
大量的市场需求,又该由谁来满足呢?显然,p2p网贷是一个渠道。华南的电商企业多赢6000万收购某家P2P网贷平台,变身多赢金融拉开了电商进军网贷市场的第一幕。
电商涉足P2P网贷能够解决什么样的问题?
首先,我们都说P2P网贷能够颠覆传统金融,因为他更高效,更便捷。但是,P2P网贷真像我们想象中的那样吗?
对于多数网贷平台来说,其风控严重依赖于线下。很多公司虽然号称互联网金融企业,却到处开线下店,业务员占到了公司员工数的70%以上。这样的模式,并不如我们当初所设想的那样高效与便捷。模式变得越来越重是目前很多平台所面临的最尬尴的问题。 风控难题,制约着很多网贷平台的发展。
那么电商又有什么样的解决方式呢?很简单,电商的交易数据、物流数据、包括平台电商给出的授信额度都能够作为风控的参考依据。大数据风控目前最可靠的数据一定是来自电商领域。这样就能够在目前的环境下真正的做到P2P网贷的高效与便捷。风控与业务线上化,这样的模式也许就P2P网贷的最优模式。
非平台类型的电商涉足P2P网贷所面临的问题
前面提到了,阿里、慧聪这样的平台方其实很早之前就涉及了电商金融服务。最核心的因素就是他们有最核心的数据,基于大数据的风控就能够对电商企业进行授信。但是,类似于多赢这样的非平台方的电商企业,涉足网贷领域最大的难点,是如何与阿里、慧聪这样的平台方合作,取得其授信资料,解决风控问题,才是多赢金融未来要走的路。
阿里的征信服务,未来或将成为电商解决风控的重要参考依据。目前阿里推出了针对个人信用评估的芝麻信用,未来针对企业用户的信用评估,是否会向围绕“电商企业提供金融服务”的平台开放呢?如果开放,这样一个巨大的市场,注定成为P2P网贷行业的最优模式。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28