“数据分析不只是统计方法,更重要的是贴近业务的需求分析、实施过程、与效果评估。真正了解一个行业,就要接触到这个行业的遗产,目前商业数据分析遗产基本上都是以SAS的形式出现的。如果说SAS的遗产是100的话,其他软件的遗产加在一起不超过50。”_摘自CDA SAS金牌讲师常老师语录。
SAS的优点不胜枚举,某知乎网友的总结供大家参考:
1. 权威认证:SAS认证被美国企业界评为“最有价值认证”,SAS被评为雇主最认可的企业级统计软件。被誉为全美福利最好的企业,Google在制定公司园区的福利安排时,就曾以SAS为模板;
2. 功能强大:SAS系统是一个组合的软件系统,并具有比较灵活的功能扩展接口和强大的功能模块,在BASE SAS的基础上,还可以增加如下不同的模块而增加不同的功能,SAS EG(可视化统计分析)、SAS EM(数据挖掘)、SAS QC(质量控制)、SAS GRAPH(绘图系统)等;
3. 运行快速:SAS基于硬盘运行的数据处理和分析机制,使得SAS可以在本机进行大数据分析和处理;
4. 适用性强:SAS几乎可以运用在一切数据分析的行业、领域及场景,信贷风险建模、反欺诈模型、客户关系管理、电信离网用户预警、网站行为关联分析商品关联规则等。
培训信息
地点 |
课程 |
时间 |
讲师 |
费用 |
报名 |
北京 |
SAS数据挖掘 |
6月25-26日 7月02-03日 7月09-10日 |
翟祥 |
5900元/人 |
|
上海 |
SAS数据挖掘 |
6月4-5日 6月11-12日 6月18-19日 |
徐刚 |
5900元/人 |
|
远程 |
SAS数据挖掘 |
6月25-7月10日 6月4-19日
|
翟祥、徐刚 |
4400元/人 |
课程大纲
第一部分:编程基础 1、编程基础介绍 1.1 SAS 入门与基本语法 2 、访问与展示数据 2.1 认识 SAS数据和逻辑库 2.2 深入理解 SAS 数据类型 3、数据管理和操纵 3.1 创建变量 3.2 数据循环处理 3.3 合并 SAS数据集 3.4 重组数据集 4、 数据描述和图表制作
第二部分:SAS数据分析基础与高级编程 1、SQL过程简介 2、SAS宏语言 2.1 宏编译器的运行机制、宏变量 2.2 通过Data和sql步创建宏变量 2.3 定义宏和定义宏参数 2.4 宏中的分支流程语句 2.5 宏中的循环流程语句
1. 数据挖掘简介、方法论、技术介绍 2. SASEM界面与节点介绍 4. 决策树、组合算法、以及辅助应用 5. 神经网络 7. SVM、贝叶斯网络和其他模型介绍 8.模型评估 9.优化(两阶段模型)
13、聚类分析 13.1聚类分析流程 13.2 快速聚类 13.3谱聚类、密度聚类和其他聚类 14、关联规则 14.1 关联规则 14.2 序贯模型
|
讲师介绍:
翟祥:人民大学统计学博士,北京林业大学管理学院统计系教授,SAS公司骨灰级讲师。长期从事金融、电信、零售行业数据挖掘咨询工作。
徐筱刚:男,高级数据分析师,具有深厚的数理统计与应用数据分析专业背景,上海某金融机构数据分析部门高级DA,具有八年数据分析、数据挖掘的从业经验,曾就职零售企业、咨询公司等,独立或带团队完成零售、电信、金融等多个大型数据挖掘项目。
主要案例:
1.构建数据集操作示例演示和描述性分析(流失预测模型);
2.数据清洗案例;
3.老兵捐款案例;
4.销售提升数据进行操作演示和练习;
5.客户流失模型演示和练习;
6.保险客户流失;
7.SAS编程构造信用评分模型(进件评分卡);
8.银行产品关联分析。
报名流程:
1.在线填写报名信息:
2.给予反馈,确认报名信息
3.网上缴费
4.开课前一周发送电子版课件和教室路线图
优惠多多:
1. 全日制学生及CDA LEVEL Ⅰ老学员8折优惠(学生证证明文件);
2. 同一单位三人及以上报名9折优惠,五人及以上8折优惠;
4. 老学员9折优惠;
学员对象:
1.各行业数据分析、数据挖掘从业者
2.金融、电信、零售、医学等各行业业务数据分析人员
3.政府事业单位大数据及数据挖掘项目人员
4.数据挖掘岗位就业、提拔涨薪、技能优化等从业人员
5.对数据挖掘感兴趣的各界人员
关于证书:
CDA考试安排:
1. 考试时间2016年6月26日
2. 考试内容:CDA LEVLE Ⅱ建模分析师大纲。
3. 报名费用:1500元/人。参加CDA系统培训学员费用为1000/人。
4. 其他:CDA考试一次不过可申请补考,补考费用为原价一半。证书3年审核一次。
5. 报考链接: http://exam.cda.cn/
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20