数据挖掘工程师笔试及答案整理
《CDA数据分析认证考试模拟题库》
《企业数据分析面试题库》
一、简答题(30分)
1、简述数据库操作的步骤(10分)
步骤:建立数据库连接、打开数据库连接、建立数据库命令、运行数据库命令、保存数据库命令、关闭数据库连接。
经萍萍提醒,了解到应该把preparedStatement预处理也考虑在数据库的操作步骤中。此外,对实时性要求不强时,可以使用数据库缓存。
2、TCP/IP的四层结构(10分)
3、什么是MVC结构,简要介绍各层结构的作用(10分)
Model、view、control。
我之前有写过一篇《MVC层次的划分》
二、算法与程序设计(45分)
1、由a-z、0-9组成3位的字符密码,设计一个算法,列出并打印所有可能的密码组合(可用伪代码、C、C++、Java实现)(15分)
把a-z,0-9共(26+10)个字符做成一个数组,然后用三个for循环遍历即可。每一层的遍历都是从数组的第0位开始。
2、实现字符串反转函数(15分)
3、百度凤巢系统,广告客户购买一系列关键词,数据结构如下:(15分)
User1 手机 智能手机 iphone 台式机 …
User2 手机 iphone 笔记本电脑 三星手机 …
User3 htc 平板电脑 手机 …
(1)根据以上数据结构对关键词进行KMeans聚类,请列出关键词的向量表示、距离公式和KMeans算法的整体步骤
KMeans方法一个很重要的部分就是如何定义距离,而距离又牵扯到特征向量的定义,毕竟距离是对两个特征向量进行衡量。
本题中,我们建立一个table。
只要两个关键词在同一个user的描述中出现,我们就将它在相应的表格的位置加1.
这样我们就有了每个关键词的特征向量。
例如:
<手机>=(1,1,2,1,1,1,0,0)
<智能手机> = (1,1,1,1,0,0,0,0)
我们使用夹角余弦公式来计算这两个向量的距离。
夹角余弦公式:
设有两个向量a和b,,
所以,cos<手机,智能机>=(1+1+2+1)/(sqrt(7+2^2)*sqrt(4))=0.75
cos<手机,iphone>=(2+1+2+1+1+1)/(sqrt(7+2^2)*sqrt(2^2+5))=0.80
夹角余弦值越大说明两者之间的夹角越小,夹角越小说明相关度越高。
通过夹角余弦值我们可以计算出每两个关键词之间的距离。
特征向量和距离计算公式的选择(还有其他很多种距离计算方式,各有其适应的应用场所)完成后,就可以进入KMeans算法。
KMeans算法有两个主要步骤:1、确定k个中心点;2、计算各个点与中心点的距离,然后贴上类标,然后针对各个类,重新计算其中心点的位置。
初始化时,可以设定k个中心点的位置为随机值,也可以全赋值为0。
KMeans的实现代码有很多,这里就不写了。
不过值得一提的是MapReduce模型并不适合计算KMeans这类递归型的算法,MR最拿手的还是流水型的算法。KMeans可以使用MPI模型很方便的计算(庆幸的是YARN中似乎开始支持MPI模型了),所以hadoop上现在也可以方便的写高效算法了(但是要是MRv2哦)。
(2)计算给定关键词与客户关键词的文字相关性,请列出关键词与客户的表达符号和计算公式
这边的文字相关性不知道是不是指非语义的相关性,而只是词频统计上的相关性?如果是语义相关的,可能还需要引入topic model来做辅助(可以看一下百度搜索研发部官方博客的这篇【语义主题计算】)……
如果是指词频统计的话,个人认为可以使用Jaccard系数来计算。
通过第一问中的表格,我们可以知道某个关键词的向量,现在将这个向量做一个简单的变化:如果某个分量不为0则记为1,表示包含这个分量元素,这样某个关键词就可以变成一些词语的集合,记为A。
客户输入的关键词列表也可以表示为一个集合,记为B
Jaccard系数的计算方法是:
所以,假设某个用户userX的关键词表达为:{三星手机,手机,平板电脑}
那么,关键词“手机”与userX的关键词之间的相关性为:
J("手机",“userX关键词”)=|{三星手机,手机,平板电脑}|/|{手机,智能手机,iphone,台式机,笔记本电脑,三星手机,HTC,平板电脑}| = 3/8
关键词“三星手机”与用户userX的关键词之间的相关性为:
J("三星手机",“userX关键词”)=|{手机,三星手机}|/|{手机,三星手机,iphone,笔记本电脑,平板电脑}| = 2/5
三、系统设计题(25分)
一维数据的拟合,给定数据集{xi,yi}(i=1,…,n),xi是训练数据,yi是对应的预期值。拟使用线性、二次、高次等函数进行拟合
线性:f(x)=ax+b
二次:f(x)=ax^2+bx+c
三次:f(x)=ax^3+bx^2+cx+d
(1)请依次列出线性、二次、三次拟合的误差函数表达式(2分)
误差函数的计算公式为:
系数1/2只是为了之后求导的时候方便约掉而已。
那分别将线性、二次、三次函数带入至公式中f(xi)的位置,就可以得到它们的误差函数表达式了。
(2)按照梯度下降法进行拟合,请给出具体的推导过程。(7分)
假设我们样本集的大小为m,每个样本的特征向量为X1=(x11,x12, ..., x1n)。
那么整个样本集可以表示为一个矩阵:
其中每一行为一个样本向量。
我们假设系数为θ,则有系数向量:
对于第 i 个样本,我们定义误差变量为
我们可以计算cost function:
由于θ是一个n维向量,所以对每一个分量求偏导:
梯度下降的精华就在于下面这个式子:
这个式子是什么意思呢?是将系数减去导数(导数前的系数先暂时不用理会),为什么是减去导数?我们看一个二维的例子。
假设有一个曲线如图所示:
假设我们处在红色的点上,那么得到的导数是个负值。此时,我在当前位置(x轴)的基础上减去一个负值,就相当于加上了一个正值,那么就朝导数为0的位置移动了一些。
如果当前所处的位置是在最低点的右边,那么就是减去一个正值(导数为正),相当于往左移动了一些距离,也是朝着导数为0的位置移动了一些。
这就是梯度下降最本质的思想。
那么到底一次该移动多少呢?就是又导数前面的系数α来决定的。
现在我们再来看梯度下降的式子,如果写成矩阵计算的形式(使用隐式循环来实现),那么就有:
这边会有点棘手,因为j确定时,xij为一个数值(即,样本的第j个分量),Xθ-Y为一个m*1维的列向量(暂时称作“误差向量”)。
括号里面的部分就相当于:
第1个样本第j个分量*误差向量 + 第2个样本第j个分量*误差向量 + ... + 第m个样本第j个分量*误差向量
我们来考察一下式子中各个部分的矩阵形式。
当j固定时,相当于对样本空间做了一个纵向切片,即:
那么此时的xij就是m*1向量,所以为了得到1*1的形式,我们需要拼凑 (1*m)*(m*1)的矩阵运算,因此有:
如果把θ向量的每个分量统一考虑,则有:
关于θ向量的不断更新的终止条件,一般以误差范围(如95%)或者迭代次数(如5000次)进行设定。
梯度下降的有点是:
不像矩阵解法那么需要空间(因为矩阵解法需要求矩阵的逆)
缺点是:如果遇上非凸函数,可能会陷入局部最优解中。对于这种情况,可以尝试几次随机的初始θ,看最后convergence时,得到的向量是否是相似的。
(3)下图给出了线性、二次和七次拟合的效果图。请说明进行数据拟合时,需要考虑哪些问题。在本例中,你选择哪种拟合函数。(8分)
因为是在网上找的题目,没有看到图片是长什么样。大致可能有如下几种情况。
如果是如上三幅图的话,当然是选择中间的模型。
欠拟合的发生一般是因为假设的模型过于简单。而过拟合的原因则是模型过于复杂且训练数据量太少。
对于欠拟合,可以增加模型的复杂性,例如引入更多的特征向量,或者高次方模型。
对于过拟合,可以增加训练的数据,又或者增加一个L2 penalty,用以约束变量的系数以实现降低模型复杂度的目的。
L2 penalty就是:
(注意不要把常数项系数也包括进来,这里假设常数项是θ0)
另外常见的penalty还有L1型的:
(L1型的主要是做稀疏化,即sparsity)
两者为什么会有这样作用上的区别可以找一下【统计之都】上的相关文章看一下。我也还没弄懂底层的原因是什么。
(4)给出实验方案(8分)
2013网易实习生招聘 岗位:数据挖掘工程师
一、问答题
a) 欠拟合和过拟合的原因分别有哪些?如何避免?
欠拟合:模型过于简单;过拟合:模型过于复杂,且训练数据太少。
b) 决策树的父节点和子节点的熵的大小?请解释原因。
父节点的熵>子节点的熵
c) 衡量分类算法的准确率,召回率,F1值。
d) 举例序列模式挖掘算法有哪些?以及他们的应用场景。
DTW(动态事件规整算法):语音识别领域,判断两端序列是否是同一个单词。
Holt-Winters(三次指数平滑法):对时间序列进行预测。时间序列的趋势、季节性。
Generalized Sequential Pattern(广义序贯模式)
PrefixSpan
二、计算题
1) 给你一组向量a,b
a) 计算二者欧氏距离
(a-b)(a-b)T
即:
b) 计算二者曼哈顿距离
2) 给你一组向量a,b,c,d
a) 计算a,b的Jaccard相似系数
b) 计算c,d的向量空间余弦相似度
c) 计算c、d的皮尔森相关系数
即线性相关系数。
或者
三、(题目记得不是很清楚)
一个文档-词矩阵,给你一个变换公式tfij’=tfij*log(m/dfi);其中tfij代表单词i在文档f中的频率,m代表文档数,dfi含有单词i的文档频率。
1) 只有一个单词只存在文档中,转换的结果?(具体问题忘记)
2) 有多个单词存在在多个文档中,转换的结果?(具体问题忘记)
3) 公式变换的目的?
四、推导朴素贝叶斯分类P(c|d),文档d(由若干word组成),求该文档属于类别c的概率,
并说明公式中哪些概率可以利用训练集计算得到。
五、给你五张人脸图片。
可以抽取哪些特征?按照列出的特征,写出第一个和最后一个用户的特征向量。
六、考查ID3算法,根据天气分类outlook/temperature/humidity/windy。(给你一张离散型
的图表数据,一般学过ID3的应该都知道)
a) 哪一个属性作为第一个分类属性?
b) 画出二层决策树。
七、购物篮事物(关联规则)
一个表格:事物ID/购买项。
1) 提取出关联规则的最大数量是多少?(包括0支持度的规则)
2) 提取的频繁项集的最大长度(最小支持>0)
3) 找出能提取出4-项集的最大数量表达式
4) 找出一个具有最大支持度的项集(长度为2或更大)
5) 找出一对项a,b,使得{a}->{b}和{b}->{a}有相同置信度。
八、一个发布优惠劵的网站,如何给用户做出合适的推荐?有哪些方法?设计一个合适的系
统(线下数据处理,存放,线上如何查询?)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10