作者:丁点helper
来源:丁点帮你
前面的文章主要介绍了回归的一些关键词,比如回归系数、样本和总体回归方程、预测值和残差等,今天我们结合一个案例来看看如何做完整的回归分析,准确而言,是多重线性回归(Multiple Linear Regreesion)。
回顾:多重线性回归
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
在实际应用中,我们当然很少只纳入一个自变量。多重线性回归一般也叫“多元线性回归”,我更支持“多重”的叫法,因为“多元”一般也指“因变量Y”有多个。
通过前面的文章,我们知道做线性回归就是要构建Y与X的线性关系,主要目的有两个,一是确定X对Y的影响程度(即回归系数的计算);二是通过X来预测Y。
这里最重要的一条准则是:Y需要是定量变量,就是类似于“收入”、“得分”等。而对X没有这样的要求,可以是定量的,如“教育年限”、“年龄”等;也可以是“性别”、“民族”等分类变量。
案例 从某高校三年级女生体检的数据中,随机抽取20名作为样本,数据包括体重(kg)、胸围(cm)、肩宽(cm)及肺活量(L),分析女大学生肺活量的影响因素,数据见下表:
首先简单看看上表的数据,我们想要研究女生肺活量的影响因素,所以回归的因变量为“肺活量(Y)”,根据常识和数据,这里的Y是定量变量。
搜集的其他数据作为潜在的影响因素(X)纳入回归方程,分别是:体重、胸围、肩宽。我们也能简单就能判断这三个自变量都是定量变量。
(对于变量类型如何判断还不太了解的同学,戳此回顾)
这里进行回归分析,一是判断这些X是否都会影响Y(总体回归系数是否不为0);二是通过构造的回归方程,未来根据X的值计算Y的预测值。
多重线性回归的SPSS操作
回归分析用SPSS操作的步骤如下:
SPSS数据录入格式
回归操作窗口,Dependent为因变量,Independent为自变量,分别移入
上图中的“Method”称作“自变量筛选”方法,我们做线性回归分析很重要的一点是找Y的影响因素,这里的“找”就意味着“筛选”。
比如本案例我们纳入了三个自变量,通过回归分析,就是要找到那些真正对Y产生影响的变量。最终的结果有可能三个X都有影响,则最终的回归方程会有三个X,也有可能一个X都没有。
我们看到Method的下拉菜单有不同的选项:
Enter:将自变量强行全部纳入回归方程,不排除回归系数P值大于0.05的情况;
Stepwise、Remove、Backward、Forward,这些都是软件筛选自变量的方法,虽然名称不一,但思想相近,主要就是根据回归系数检验的P值是否小于0.05(有的是0.1)判断回归方程中应不应该有这个变量。
一般来讲,没有哪个筛选方法最优,但实际应用中常见的是Stepwise和Backward,建议大家自己进行回归分析时可以更换不同的方法尝试,选择自己认为合适的方法。
本案例使用Stepwise法,中文称为“逐步法”或“步进法”。
多重线性回归的结果分析
以下为SPSS分析结果展示:
表1:回归方程的拟合程度
上表最左侧一列为“Model”,表示的是SPSS筛选变量的过程,因为我们选择的是stepwise,所以每进行一步,即每筛选一个变量,就称为一个Model,比如Model"1"表示只纳入1个自变量,Model“2”表示纳入2个,“3”表示纳入3个,”4“表示最终模型剔除了一个自变量,仅纳入2个自变量。
表格第2-4列分别为”R、R Square、Adjusted R Square“,一般的教科书讲的很多,表示的是回归方程对因变量的解释程度,数值越大,解释度越高。但它又是一个比较尴尬的数,实际应用简单参考即可。
表2:回归方程的整体检验
这里的Model和上表1中表示的是同一个意思,代表了包括不同自变量的回归方程。对于回归方程的检验,一般来讲,都是有统计学意义的,看最后一列(Sig.),即P值均小于0.05。
表3:回归系数结果
表3中的Model详细展示了变量的筛选过程,比如在Model 3中,回归方程将三个自变量”肩宽、体重、胸围“全部纳入,但是发现,”肩宽“这个变量的Sig.(P值)大于0.1了,于是就将它剔除出去,从而得到模型4——只纳入”体重和胸围“两个自变量,对照后面的P值结果,均小于0.05。
以上只是一种筛选变量的一种方法(Stepwise),通过统计软件P值自动进行,这并不意味,所有的线性回归分析均只能通过这种方法筛选,我们常说需要结合专业知识判断,在做回归分析时也不例外。
如果回归分析的结果与专业知识相悖,比如根据专业知识有影响的变量却被软件剔除,那我们首先得慎重思考回归的结果是否可信,比如是否满足前文提及的LINE条件,是否出现了多重共线性问题等等;如果经过诊断分析发现这些问题都不存在,在研究报告或论文中,仍可以如实地报告结果,为后面的研究提供参考。
本案例,我们还是依照统计软件的结果筛选变量,得到的最终回归方程为:
根据上表,我们写出本研究的回归方程:
上述结果表示,可以认为体重和胸围是影响该校一年级女大学生肺活量的主要因素,保持胸围不变,体重增加1kg,估计肺活量平均增加0.081L(回归系数”0.081“的含义,在多重线性回归分析中也可称作”偏回归系数“);保持体重不变,胸围增大1cm,估计肺活量平均增加0.046L(回归系数”0.046“的含义)。
另外,上表最后一列提供了一个”标准化偏回归系数“,这是将XY分别标准化之后再进行回归分析,如下:
”标准化偏回归系数“可以用来比较不同的自变量X对Y的影响程度。本例中,体重和胸围的标准化偏回归系数分别为0.644和0.436,意味着体重对肺活量的影响大于胸围对肺活量的影响。
以上即为回归分析的全过程,最后留给大家一个思考题,这里进行的分析,表示的是X和Y的相关关系,还是因果关系?欢迎在评论区留言讨论。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16